DING Chao, FENG Guangcai, ZHOU Yushan, WANG Huiqiang, DU Ya'nan, CHEN Chenyue. Nepal Earthquake Triggered Landslides Recognition and Deformation Analysis of Avalanches' Region[J]. Geomatics and Information Science of Wuhan University, 2018, 43(6): 847-853, 950. DOI: 10.13203/j.whugis20160031
Citation: DING Chao, FENG Guangcai, ZHOU Yushan, WANG Huiqiang, DU Ya'nan, CHEN Chenyue. Nepal Earthquake Triggered Landslides Recognition and Deformation Analysis of Avalanches' Region[J]. Geomatics and Information Science of Wuhan University, 2018, 43(6): 847-853, 950. DOI: 10.13203/j.whugis20160031

Nepal Earthquake Triggered Landslides Recognition and Deformation Analysis of Avalanches' Region

Funds: 

Shenghua Yuying Fund of Central South University 

the Open Foundation of the State Key Laboratory of Earthquake Dynamics LED2014B02

More Information
  • Author Bio:

    DING Chao, postgraduate, specializes in the earthquake deformation monitoring. E-mail: dingchao_csu@csu.edu.cn

  • Corresponding author:

    FENG Guangcai, PhD, associate professor. E-mail: fredgps@csu.edu.cn

  • Received Date: January 27, 2016
  • Published Date: June 04, 2018
  • On April 25th 2015, an Mw 7.8 earthquake occurred near Gorkha, Nepal, which triggered substantial landslides and avalanches in Tibet and Nepal causing severe casualties and economic losses. In this study, based on Landsat 8 images and sub-pixel correlation technology, we acquire horizontal deformation fields of the earthquake region. Combined with the visual interpretation method, we detected the landslides and debris deposition areas of avalanches by extracting the corresponding decorrelation noises. We determined the correlation between the landslides and topography factors. Experimental results show that the extraction of decorrelation noises caused by geohazards from the deformation field, when combined with validation of visual interpretation method, is an effective method for locating the regions effected by landslides and avalanches. Furthermore, results show that landslides are more likely to occur at slope > 30° terrain, both sides of the valley, and high slope is more easily trigger larger single landslides. This study provides a new perspective on detection of earthquake-triggered landslides and debris deposition areas of avalanches, monitoring and early warning of glaciers' velocity based on the Landsat 8 satellite imagery.
  • [1]
    Wikipedia. April 2015 Nepal Earthquake[OL]. https://en.wikipedia.org/wiki/April 2015 Nepal earthquake, 2016
    [2]
    Feng G C, Li Z W, Shan X J, et al. Geodetic Model of the 2015 April 25 Mw 7.8 Gorkha Nepal Earthquake and Mw 7.3 Aftershock Estimated from InSAR and GPS Data[J]. Geophysical Journal International, 2015, 203(2):896-900 doi: 10.1093/gji/ggv335
    [3]
    陶舒. 汶川地震滑坡遥感信息提取及灾害危险性评价研究[D]. 北京: 首都师范大学, 2009

    Tao Shu. Information Extraction of Landslides Induced by the Wenchuan Earthquake and Susceptibi-lity Assessment Using Remotely Sensed Data[D]. Beijing: Capital Normal University, 2009
    [4]

    Xu Chong, Xu Xiwei, Shen Lingling, et al. Inventory of Landslides Triggered by the 2014 MS 6.5 Ludian Earthquake and Its Implications on Several Earthquake Parameters[J].Seismology and Geology, 2014, 36(4):1186-1203 https://www.researchgate.net/profile/Chong_Xu/publication/287556048_Inventory_of_landslides_triggered_by_the_2014_MS65_Ludian_earthquake_and_its_implications_on_several_earthquake_parameters/links/580ea47a08ae7525273d29d3.pdf?origin=publication_list
    [5]
    武雪玲, 沈少青, 牛瑞卿. GIS支持下应用PSO-SVM模型预测滑坡易发性[J].武汉大学学报·信息科学版, 2016, 41(5):665-671 http://ch.whu.edu.cn/CN/abstract/abstract5447.shtml

    Wu Xueling, Shen Shaoqing, Niu Ruiqing. Landslide Susceptibility Prediction Using GIS and PSO-SVM[J]. Geomatics and Information Science of Wuhan University, 2016, 41(5):665-671 http://ch.whu.edu.cn/CN/abstract/abstract5447.shtml
    [6]
    Lacroix P, Zavala B, Berthier E, et al. Supervised Method of Landslide Inventory Using Panchromatic SPOT5 Images and Application to the Earthquake-Triggered Landslides of Pisco (Peru, 2007, Mw8.0)[J]. Remote Sensing, 2013, 5(6):2590-2616 doi: 10.3390/rs5062590
    [7]
    Leprince S, Barbot S, Ayoub F, et al. Automatic and Precise Orthorectification, Co-registration and Sub-pixel Correlation of Satellite Images, Application to Ground Deformation Measurements[J]. IEEE Transactions on Geoscience and Remote Sen-sing, 2007, 45(6):1529-1558 doi: 10.1109/TGRS.2006.888937
    [8]
    董晓燕, 丁晓利, 李志伟, 等.一种新的SAR像素偏移量估计流程及其在同震形变监测中的应用[J].武汉大学学报·信息科学版, 2011, 36(7):789-792 http://ch.whu.edu.cn/CN/abstract/abstract592.shtml

    Dong Xiaoyan, Ding Xiaoli, Li Zhiwei, et al. A New Chain for SAR Pixel Offset Eestimation and Its Application in Co-seismic Deformation Measurement[J].Geomatics and Information Science of Wuhan University, 2011, 36(7):789-792 http://ch.whu.edu.cn/CN/abstract/abstract592.shtml
    [9]
    Ding C, Feng G C, Li Z W, et al. Spatio-Temporal Error Sources Analysis and Accuracy Improvement in Landsat 8 Image Ground Displacement Measurements[J].Remote Sensing, 2016, 8(11):937-958 doi: 10.3390/rs8110937
    [10]
    Binet R, Bollinger L. Horizontal Coseismic Deformation of the 2003 Bam (Iran) Earthquake Measured from SPOT-5 THR Satellite Imagery[J]. Geophysi-cal Research Letters, 2005, 320(2):287-294 doi: 10.1029/2004GL021897
    [11]
    Leung T K P, Admas J. The 2005, Mw 7.6 Kashmir Earthquake, Rupture Kinematics from Sub-pixel Correlation of ASTER Images and Seismic Waveforms Analysis[J]. Earth and Planetary Science Letters, 2006, 249(3):514-528 https://thesis.library.caltech.edu/2257/
    [12]
    冯光财, 许兵, 单新建, 等.基于Landsat 8光学影像的巴基斯坦Awaran Mw7.7地震形变监测及参数反演研究[J].地球物理学报, 2015, 58(5):1634-1644 doi: 10.6038/cjg20150515

    Feng Guangcai, Xu Bing, Shan Xinjian, et al. Coseismic Deformation and Source Parameters of the 24 September 2013 Awaran, Pakistan Mw7.7 Earthquake Derived from Optical Landsat 8 Satellite Images[J]. Chinese Journal Geophysics, 2015, 58(5):1634-1644 doi: 10.6038/cjg20150515
    [13]
    Avouac J P, Meng L, Wei S, et al. Lower Edge of Locked Main Himalayan Thrust Unzipped by the 2015 Gorkha Earthquake[J].Nature Geoscience, 2015, 8(9):1-6 http://palgrave.nature.com/ngeo/journal/v8/n9/abs/ngeo2518.html
    [14]
    Kargel J S, Leonard G J, Shugar D H, et al. Geomorphic and Geologic Controls of Geohazards Induced by Nepal's 2015 Gorkha Earthquake[J]. Science, 2016, 351(6269):1-12 http://ecite.utas.edu.au/107060
    [15]
    Jane Q. Killer Landslides: The Lasting Legacy of Nepal's Quake[OL]. http://www.nature.com/news/killer-landslides-the-lasting-legacy-of-nepal-s-quake-1.19803, 2016
    [16]
    Scherler D, Leprince S, Strecker M R. Glacier-surface Velocities in Alpine Terrain from Optical Satellite Imagery-Accuracy Improvement and Quality Assessment[J]. Remote Sensing of Environment, 2008, 112(10):3806-3819 doi: 10.1016/j.rse.2008.05.018
  • Related Articles

    [1]YIN Xiebing, LI Menghua, FENG Bin, LIU Ying, YANG Mengshi, TANG Bohui. Parameter Optimization of the SAR POT Method for NCC Stacking and Yanong Glacier Velocity Extraction[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20240303
    [2]ZHOU Weiyong, XU Min, KANG Shichang, HAN Haidong, HAN Hui. Identification of Debris-covered Koxkar Glacier in Mt. Tianshan and Study on Its Velocity Characteristics[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20220656
    [3]ZHOU Zhongzheng, XU Caijun, LIU Yang, XIONG Luyun. Extraction and Analysis of Temporal-Spatial Variation Characteristics of Surface Velocity of the Gangnalou Glacier[J]. Geomatics and Information Science of Wuhan University, 2022, 47(2): 226-233. DOI: 10.13203/j.whugis20200133
    [5]WANG Qun, ZHANG Yunling, FAN Jinghui, FU Yuhao. Monitoring the Motion of the Yiga Glacier Using GF-3 Images[J]. Geomatics and Information Science of Wuhan University, 2020, 45(3): 460-466. DOI: 10.13203/j.whugis20190036
    [6]LIU Guoxiang, ZHANG Bo, ZHANG Rui, CAI Jialun, FU Yin, LIU Qiao, YU Bing, LI Zhilin. Monitoring Dynamics of Hailuogou Glacier and the Secondary Landslide Disasters Based on Combination of Satellite SAR and Ground-Based SAR[J]. Geomatics and Information Science of Wuhan University, 2019, 44(7): 980-995. DOI: 10.13203/j.whugis20190077
    [7]ZHANG Xiaobo, ZHAO Xuesheng, GE Daqing, LIU Bin. Motion Characteristics of the South Inilchek Glacier Derived from New C-Band SAR Satellite[J]. Geomatics and Information Science of Wuhan University, 2019, 44(3): 429-435. DOI: 10.13203/j.whugis20160538
    [8]SUN Weijun, YAN Ming, AI Songtao, ZHU Guocai, WANG Zemin, LIU Leibao, XU Yuetong, REN Jiawen. Ice Temperature Characteristics of the Austre Lovénbreen Glacier in NY-Ålesund, Arctic Region[J]. Geomatics and Information Science of Wuhan University, 2016, 41(1): 79-85. DOI: 10.13203/j.whugis20150302
    [9]ZHOU Chunxia, DENG Fanghui, AI Songtao, WANG Zemin, E Dongchen. Determination of Ice-flow Velocity at the Polar Record Glacierand Dalk Glacier Using DInSAR[J]. Geomatics and Information Science of Wuhan University, 2014, 39(8): 940-944. DOI: 10.13203/j.whugis20130116
    [10]AI Songtao, WANG Zemin, E Dongchen, YAN Ming. Surface Movement Research of Arctic Glaciers Using GPS Method[J]. Geomatics and Information Science of Wuhan University, 2012, 37(11): 1337-1340.

Catalog

    Article views (1600) PDF downloads (330) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return