LI Sheng, TANG Lingjun, REN Fu, DU Qingyun, XIAO Ke, HAN Shanshan. Automatic Change Detection of Remote Sensing Image Integrated with Process Optimization[J]. Geomatics and Information Science of Wuhan University, 2018, 43(4): 542-547. DOI: 10.13203/j.whugis20160026
Citation: LI Sheng, TANG Lingjun, REN Fu, DU Qingyun, XIAO Ke, HAN Shanshan. Automatic Change Detection of Remote Sensing Image Integrated with Process Optimization[J]. Geomatics and Information Science of Wuhan University, 2018, 43(4): 542-547. DOI: 10.13203/j.whugis20160026

Automatic Change Detection of Remote Sensing Image Integrated with Process Optimization

Funds: 

The National Natural Science Foundation of China 41571438

the Open Fund of Key Laboratory of Urban Land Resources Monitoring and Simulation, Ministry of Land and Resources KF-2016-02-028

More Information
  • Author Bio:

    LI Sheng, PhD candidate, specializes in the theories and methods of change detection with remote sensing imagery. E-mail: shenglee@whu.edu.cn

  • Corresponding author:

    DU Qingyun, PhD, professor. E-mail: qydu@whu.edu.cn

  • Received Date: October 15, 2017
  • Published Date: April 04, 2018
  • At present, the method for extract change spot with remote imagery, in the law enforcement of land use, is mainly making full use of the operators' visual interpretation of the two high-resolution remote sensing imageries, to get the spatial position of the land use change. Therefore, whether the spots are right or not, it is easy to generate errors, depends by the experience of the interpreters. With general detection process, there is a good result for the particular remote sensing data. But handling the city's remote sensing image on a large scale, with various characteristics, and higher resolution, this detection method seems to be limited and hard to be applied. This paper presents a remote sensing imagechange detection process which includes two main parts:remote sensing image human-computer interactive change detection and batch automatic detection. The system has integrated thought of process optimization and the existing remote sensing image change detection methods, and used a large number of high-precision GIS data accumulated during the development of digital city, which is fully combined with the features' shape index and people's working experience. It has been applied to the extraction of land use change spot in law enforcement inspection of satellite land image in Shenzhen, improved the level of automation, and reduced the time and labor costs effectively, which is helpful for the related government to find andprevent the occurrence of illegal land use in time.
  • [1]
    李德仁, 王密, 胡芬.利用我国高分辨率卫星影像监测北京市违章建筑[J].科学通报, 2009(3):305-311 http://www.oalib.com/paper/1684075

    Li Deren, Wang Mi, Hu Fen. Monitoring of Illegal Buildings in Beijing City by Using High Resolution Satellite Images[J]. Science Bulletin, 2009(3):305-311 http://www.oalib.com/paper/1684075
    [2]
    Pacifici F, Del Frate F. Automatic Change Detection in very High Resolution Images with Pulse-Coupled Neural Networks[J]. Geoscience and Remote Sensing Letters, IEEE, 2010, 7(1):58-62 doi: 10.1109/LGRS.2009.2021780
    [3]
    Bovolo F, Bruzzone L, Marconcini M. A Novel Approach to Unsupervised Change Detection Based on a Semisupervised SVM and a Similarity Measure[J]. Geoscience and Remote Sensing, IEEE Transactions on, 2008, 46(7):2070-2082 doi: 10.1109/TGRS.2008.916643
    [4]
    Dalla M M, Benediktsson J A, Bovolo F, et al. An Unsupervised Technique Based on Morphological Filters for Change Detection in very High Resolution Images[J]. Geoscience and Remote Sensing Letters, IEEE, 2008, 5(3):433-437 doi: 10.1109/LGRS.2008.917726
    [5]
    Velloso M L F, de Souza F J. Change-Detection Using Contextual Information and Fuzzy Entropy Principle[M]//Garijo F J, Riquelme J C, Toro M. Advances in Artificial Intelligence-IBERAMIA 2002.Berlin:Springer Berlin Heidelberg, 2002:285-293
    [6]
    Celik T. Change Detection in Satellite Images Using a Genetic Algorithm Approach[J]. Geoscience and Remote Sensing Letters, IEEE, 2010, 7(2):386-390 doi: 10.1109/LGRS.2009.2037024
    [7]
    Dai Q, Liu J, Liu S. Remote Sensing Image Change Detection Based on Swarm Intelligent Algorithm[C]. Multimedia Technology (ICMT), International Conference on IEEE, Ningbo, 2010
    [8]
    黄昕, 张良培, 李平湘.融合形状和光谱的高空间分辨率遥感影像分类[J].遥感学报, 2007, 11(2):193-200 doi: 10.11834/jrs.20070226

    Huang Xin, Zhang Liangpei, Li Pingxiang. Classification of High Spatial Resolution Remotely Sensed Imagery Based on the Fusion of Spectral and Shape Features[J]. Journal of Remote Sensing, 2007, 11(2):193-200 doi: 10.11834/jrs.20070226
    [9]
    胡荣明, 黄小兵, 黄远程.增强形态学建筑物指数应用于高分辨率遥感影像中建筑物提取[J].测绘学报, 2014(5):514-520 http://www.oalib.com/paper/4158653

    Hu Rongming, Huang Xiaobing, Huang Yuancheng. An Enhanced Morphological Building Index for Building Extraction from High-Resolution Images[J]. Journal of Surveying and Mapping, 2014(5):514-520 http://www.oalib.com/paper/4158653
    [10]
    佃袁勇, 方圣辉, 姚崇怀.一种面向地理对象的遥感影像变化检测方法[J].武汉大学学报·信息科学版, 2014, 39(8):906-912 doi: 10.13203/j.whugis20130053

    Dian Yuanyong, Fang Shenghui, Yao Chonghuai. The Geographic Object-Based Method for Change Detection with Remote Sensing Imagery[J]. Geomatics and Information Science of Wuhan University, 2014, 39(8):906-912 doi: 10.13203/j.whugis20130053
    [11]
    曹建农, 王平禄, 董昱威.高分辨率遥感影像上居民地自动提取方法[J].武汉大学学报·信息科学版, 2014, 39(7):831-837 http://ch.whu.edu.cn/CN/Y2014/V39/I7/831

    Cao Jiannong, Wang Pinglu, Dong Yuwei. Automatic Extraction Technique of Residential Areas in High Resolution Remote Sensing Image[J]. Geomatics and Information Science of Wuhan University, 2014, 39(7):831-837 http://ch.whu.edu.cn/CN/Y2014/V39/I7/831
    [12]
    胡维. 多时相遥感影像变化检测并行系统设计与实现[D]. 武汉: 华中科技大学, 2011 http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=D188207

    Hu Wei. Design and Realization of Multitemporal Remote Sensing Image Change Detection System[D]. Wuhan: Huazhong University of Science & Technology, 2011 http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=D188207
    [13]
    Radke R J, Andra S, Al-Kofahi O, et al. Image Change Detection Algorithms:ASystematic Survey[J]. IEEE Transactions on Image Processing, 2005, 14(3):294-307 doi: 10.1109/TIP.2004.838698
    [14]
    Baatz M, Schäpe A. Object-Oriented and Multi-scale Image Analysis in Semantic Networks[C]. 2nd International Symposium: Operationalization of Remote Sensing, Enschede, 1999
    [15]
    Dalla Mura M, Benediktsson J A, Bovolo F, et al. An Unsupervised Technique Based on Morphological Filters for Change Detection in very High Resolution Images[J]. Geoscience and Remote Sensing Letters, IEEE, 2008, 5(3):433-437 doi: 10.1109/LGRS.2008.917726
    [16]
    Celik T. Change Detection in Satellite Images Using a Genetic Algorithm Approach[J]. Geoscience and Remote Sensing Letters, IEEE, 2010, 7(2):386-390 doi: 10.1109/LGRS.2009.2037024
    [17]
    黄昕. 高分辨率遥感影像多尺度纹理, 形状特征提取与面向对象分类研究[D]. 武汉: 武汉大学, 2009 http://cdmd.cnki.com.cn/Article/CDMD-10486-1011071326.htm

    Huang Xin. Multiscale Texture and Shape Feature Extraction and Object-Oriented Classification for very High Resolution Remotely Sensed Imagery[D]. Wuhan: Wuhan University, 2009 http://cdmd.cnki.com.cn/Article/CDMD-10486-1011071326.htm
    [18]
    Bruzzone L, Carlin L. A Multilevel Context-Based System for Classification of very High Spatial Resolution Images[J]. Geoscience and Remote Sensing, IEEE Transactions on, 2006, 44(9):2587-2600 doi: 10.1109/TGRS.2006.875360
    [19]
    Otsu N. A Threshold Selection Method From Gray-level Histograms[J]. Automatica, 1975, 11(285-296):23-27 https://www.researchgate.net/publication/202972390_A_Threshold_Selection_Method_from_Gray-Level_Histograms
    [20]
    刘正军, 张继贤, 孟亚宾, 等.基于分类与形态综合的高分辨率影像建筑物提取方法研究[J].测绘科学, 2007, 03:38-39, 46, 193 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=chkx200703014

    Liu Zhengjun, Zhang Jixian, Meng Yabin, et al.Research on Building Extraction Method of High Resolution Image Based on Classification and Morphology[J]. Science of Surveying and Mapping, 2007, 03:38-39, 46, 193 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=chkx200703014
    [21]
    雷小奇, 王卫星, 赖均.一种基于形状特征进行高分辨率遥感影像道路提取方法[J].测绘学报, 2009(5):457-465 http://edu.wanfangdata.com.cn/Periodical/Detail/rjdk201501010

    Lei Xiaoqi, Wang Weixing, Lai Jun. A Method of Road Extraction from High-Resolution Remote Sensing Images Based on Shape Features[J]. Journal of Surveying and Mapping, 2009(5):457-465 http://edu.wanfangdata.com.cn/Periodical/Detail/rjdk201501010
  • Related Articles

    [1]HU Cancheng, WANG Changcheng, SHEN Peng. A New Landslide Deformation Monitoring Method with Polarimetric SAR Based on Polarimetric Likelihood Ratio Test[J]. Geomatics and Information Science of Wuhan University, 2023, 48(12): 1943-1950. DOI: 10.13203/j.whugis20200281
    [2]CHANG Yonglei, YANG Jie, LI Pingxiang, ZHAO Lingli, YU Jie. Automatic Bridge Recognition Method in High Resolution PolSAR Images Based on CFAR Detector[J]. Geomatics and Information Science of Wuhan University, 2017, 42(6): 762-767. DOI: 10.13203/j.whugis20140828
    [3]LI Lan, CHEN Erxue, LI Zengyuan, FENG Qi, ZHAO Lei. K-Wishart Classifier for PolSAR Data and Its Performance Evaluation[J]. Geomatics and Information Science of Wuhan University, 2016, 41(11): 1498-1504. DOI: 10.13203/j.whugis20140649
    [4]CHEN Jianhong, ZHAO Yongjun, LAI Tao, LIU Wei, HUANG Jie. Fast Non-local Means Filtering of SLC Fully PolSAR Image[J]. Geomatics and Information Science of Wuhan University, 2016, 41(5): 629-634. DOI: 10.13203/j.whugis20140089
    [5]XIA Guisong, XUE Nan, WANG Zifeng, ZHANG Liangpei. Anisotropic Diffusion on Complex Tensor Fields for PolSAR Image Filtering[J]. Geomatics and Information Science of Wuhan University, 2015, 40(11): 1533-1538,1556. DOI: 10.13203/j.whugis20140630
    [6]HUANG Xiaodong, LIU Xiuguo, CHEN Qihao, CHEN Qi. An Integrated Multi\|characteristics Buildings Segmentation Model of PolSAR Images[J]. Geomatics and Information Science of Wuhan University, 2013, 38(4): 450-454.
    [7]YU Jie, LIU Limin, LI Xiaojuan, ZHAO Zheng. Applications of ICA for Filtering of Fully Polarimetric SAR Imagery[J]. Geomatics and Information Science of Wuhan University, 2013, 38(2): 212-216.
    [8]YANG Jie, ZHAO Lingli, LI Pingxiang, LANG Fengkai. Preserving Polarimetric Scattering Characteristics Classification by Introducing Normalized Circular-pol Correlation Coefficient[J]. Geomatics and Information Science of Wuhan University, 2012, 37(8): 911-914.
    [9]DENG Shaoping, LI Pingxiang, ZHANG Jixian, HUANG Guoman. Filtering of Polarimetric SAR Imagery Based on Multiplicative Model[J]. Geomatics and Information Science of Wuhan University, 2011, 36(10): 1168-1171.
    [10]YANG Jie, LANG Fengkai, LI Deren. An Unsupervised Wishart Classification for Fully Polarimetric SAR Image Based on Cloude-Pottier Decomposition and Polarimetric Whitening Filter[J]. Geomatics and Information Science of Wuhan University, 2011, 36(1): 104-107.

Catalog

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return