LI Kai, ZHANG Yongsheng, TONG Xiaochong, HAN Shuo. The Impact of Different Fitting Functions for Water Backscatter Waveforms on the Accuracy of Laser Sounding[J]. Geomatics and Information Science of Wuhan University, 2018, 43(4): 548-554. DOI: 10.13203/j.whugis20150652
Citation: LI Kai, ZHANG Yongsheng, TONG Xiaochong, HAN Shuo. The Impact of Different Fitting Functions for Water Backscatter Waveforms on the Accuracy of Laser Sounding[J]. Geomatics and Information Science of Wuhan University, 2018, 43(4): 548-554. DOI: 10.13203/j.whugis20150652

The Impact of Different Fitting Functions for Water Backscatter Waveforms on the Accuracy of Laser Sounding

Funds: 

The National Natural Science Foundation of China 41201392

Henan Polytechnic University's Key Laboratory of Mine Spatial Information Technologies of National Adminisration of Surveying, Mapping & Geoinformation KLM201404

More Information
  • Author Bio:

    LI Kai, postgraduate, specializes in airborne LiDAR bathymetry technology.E-mail: likai_rs@163.com

  • Received Date: April 04, 2016
  • Published Date: April 04, 2018
  • Considering the physical process of laser sounding echo signal formation, a fitting method using exponential function to simulate water column contribution in Lidar waveforms is proposed on the basis of the existing Lidar waveforms fitting method. In order to compare and test the new method, pluralities of sets of simulated data sets are generated for further analyses. For each detectable echoes, the sea surface echoes and the seabed echoes are fitted by Gauss function, and the backscattering echoes are fitted by triangle, quadrilateral and exponential function. The results show significantly more accurate laser sounding estimates for the use of exponential function method compared with the use of a triangular function or a quadrilateral function to fit the column contribution. Moreover, exponential function is more suitable for fitting water column contribution in Lidar waveforms of different water quality and water depth. Meanwhile, the paper examines the impact of the volume scattering function at 180° on laser sounding estimates.
  • [1]
    Jutzi B, Stilla U. Laser Pulse Analysis for Reconstruction and Classification of Urban Objects[J].International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 2003, 34(3/W8):151-156 http://www.researchgate.net/publication/26919955_Laser_pulse_analysis_for_reconstruction_and_classification_of_urban_objects
    [2]
    Hofton M A, Minster J B, Blair J B. Decomposition of Laser Altimeter Waveforms[J].IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(4):1989-1996 doi: 10.1109/36.851780
    [3]
    Roncat A, Wagner W, Melzer T, et al. Echo Detection and Localization in Full-Waveform Airborne Laser Scanner Data Using the Averaged Square Difference Function Estimator[J]. Photogrammetric Journal of Finland, 2008, 21(1):62-75 https://www.researchgate.net/publication/248359607_Echo_Detection_and_Localization_in_Full-Waveform_Airborne_Laser_Scanner_Data_using_the_Averaged_Square_Difference_Function_Estimator
    [4]
    Tulldahl H M, Steinvall K O. Analytical Waveform Generation from Small Objects in LiDAR Bathymetry[J].Applied Optics, 1999, 38(6):1021-1039 doi: 10.1364/AO.38.001021
    [5]
    Guenther G C, Cunningham A G, Larocque P E, et al. Meeting the Accuracy Challenge in Airborne LiDAR Bathymetry[J]. Proc. Earsel Symp. Workshop on LiDAR Remote Sensing of Land & Sea, 2000(1):1-27 http://agris.fao.org/agris-search/search.do?recordID=AV20120133452
    [6]
    Guenther G C, Mesick H C. Analysis of Airborne Laser Hydrography Waveforms[C]. International Society for Optics and Photonics Orlando Technical Symposium, Orlando, 1988 http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=1252318
    [7]
    Wong H, Antoniou A. Characterization and Decomposition of Waveforms for LARSEN 500 Airborne System[J]. IEEE Transactions on Geoscience and Remote Sensing, 1991, 29(6):912-921 doi: 10.1109/36.101370
    [8]
    Allouis T, Bailly J S, Pastol Y, et al. Comparison of LiDAR Waveform Processing Methods for very Shallow Water Bathymetry Using Raman, Near-Infrared and Green Signals[J]. Earth Surface Processes and Landforms, 2010, 35(6):640-650 https://www.researchgate.net/publication/229804649_Comparison_of_LiDAR_Waveform_Processing_Methods_for_Very_Shallow_Water_Bathymetry_Using_Raman_Near-Infrared_and_Green_Signals
    [9]
    Abdallah H, Baghdadi N, Bailly J S, et al. Wa-LiD:A New LiDAR Simulator for Waters[J]. IEEE Geoscience and Remote Sensing Letters, 2012, 9(4):744-748 doi: 10.1109/LGRS.2011.2180506
    [10]
    Abdallah H, Bailly J S, Baghdadi N N, et al. Potential of Space-Borne LiDAR Sensors for Global Bathymetry in Coastal and Inland Waters[J]. Selected Topics in IEEE Journal of Applied Earth Observations and Remote Sensing, 2013, 6(1):202-216 doi: 10.1109/JSTARS.2012.2209864
    [11]
    Abady L, Bailly J S, Baghdadi N, et al. Assessment of Quadrilateral Fitting of the Water Column Contribution in LiDAR Waveforms on Bathymetry Estimates[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(4):813-817 doi: 10.1109/LGRS.2013.2279271
    [12]
    Cook R L, Torrance K E. A Reflectance Model for Computer Graphics[J]. ACM Transactions on Graphics (TOG), 1982(1):7-24
    [13]
    Wang C, Li Q, Liu Y, et al. A Comparison of Waveform Processing Algorithms for Single-Wavelength LiDAR Bathymetry[J].ISPRS Journal of Photogrammetry and Remote Sensing, 2015(101):22-35 https://www.sciencedirect.com/science/article/pii/S0924271614002718
    [14]
    Mobley C D. Light and Water:Radiative Transfer in Natural Waters[M]. New York:Academic Press, 1994
    [15]
    Petzold T J. Volume Scattering Functions for Selected Ocean Waters[R]. San Diego: Scripps Institution of Oceanography, 1972
    [16]
    Marquardt D W. An Algorithm for Least-Squares Estimation of Nonlinear Parameters[J]. Journal of the Society for Industrial & Applied Mathematics, 1963, 11(2):431-441 doi: 10.1137/0111030
  • Related Articles

    [1]CAI Xianhua, LIU Kaili, HU Zhuoliang, ZHANG Yuan. An Algorithm for Constructing Road Network Using Block Polygon Topology[J]. Geomatics and Information Science of Wuhan University, 2021, 46(8): 1170-1177. DOI: 10.13203/j.whugis20190348
    [2]YANG Wei, AI Tinghua. Extracting Arterial Road Polygon from OpenStreetMap Data Based on Delaunay Triangulation[J]. Geomatics and Information Science of Wuhan University, 2018, 43(11): 1725-1731. DOI: 10.13203/j.whugis20160294
    [3]ZHANG Hao, WU Fang, GONG Xianyong, XU Junkui, ZHANG Juntao. A Parallel Factor-Based Method of Arterial Two-Lane Roads Recognition[J]. Geomatics and Information Science of Wuhan University, 2017, 42(8): 1123-1130. DOI: 10.13203/j.whugis20150122
    [4]WANG Xiao, QIAN Haizhong, LIU Hailong, HE Haiwei, CHEN Jingnan. A Hierarchical and Iterative Road Network Matching Method by Using Road Classification[J]. Geomatics and Information Science of Wuhan University, 2016, 41(8): 1072-1078. DOI: 10.13203/j.whugis20140441
    [5]LIU Hailong, QIAN Haizhong, WANG Xiao, HE Haiwei. Road Networks Global Matching Method Using Analytical Hierarchy Process[J]. Geomatics and Information Science of Wuhan University, 2015, 40(5): 644-651. DOI: 10.13203/j.whugis20130350
    [6]LI Fei, LUAN Xuechen, YANG Bisheng, LI Qiuping. Automatic Topology Maintenance Approach for High-level Road Networks[J]. Geomatics and Information Science of Wuhan University, 2014, 39(6): 729-733. DOI: 10.13203/j.whugis20140115
    [7]LUAN Xuechen, YANG Bisheng, ZHANG Yunfei. Structural Hierarchy Analysis of Streets Based on Complex Network Theory[J]. Geomatics and Information Science of Wuhan University, 2012, 37(6): 728-732.
    [8]LI Qingquan, ZENG Zhe, YANG Bisheng, LIBijun. Betweenness Centrality Analysis for Urban Road Networks[J]. Geomatics and Information Science of Wuhan University, 2010, 35(1): 37-41.
    [9]ZHU Qing, LI Yuan. Review of Road Network Models[J]. Geomatics and Information Science of Wuhan University, 2007, 32(6): 471-476.
    [10]DENG Hongyan, WU Fang, ZHAI Renjian. A Generalization Model of Road Networks Based on Genetic Algorithm[J]. Geomatics and Information Science of Wuhan University, 2006, 31(2): 164-167.
  • Cited by

    Periodical cited type(5)

    1. 庞琪沛,吴云龙,徐景田,史绪国,张毅. 甘肃积石山Ms 6.2地震深部构造特征和动力学过程. 武汉大学学报(信息科学版). 2025(02): 356-367 .
    2. 段国勇,马如梦. 三峡库区灰岩浸泡损伤-孔隙水压耦合模型研究. 水利水电技术(中英文). 2024(09): 178-186 .
    3. 胡锦涛,谢军,危自根,金超. 三峡库区秭归段浅层速度结构和孕震环境. 地震学报. 2023(02): 223-233 .
    4. 李路顺,汪泽成,肖安成,胡安平,陈友智,王芊芊. 扬子板块北缘新元古代盆地结构与马槽园群归属研究. 地学前缘. 2022(06): 291-304 .
    5. 韩飞,苏艳华,王泽. 三峡地区流动重力差分变化及其特征分析. 测绘科学. 2021(04): 1-5+19 .

    Other cited types(1)

Catalog

    Article views (1695) PDF downloads (283) Cited by(6)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return