LI Kai, ZHANG Yongsheng, TONG Xiaochong, HAN Shuo. The Impact of Different Fitting Functions for Water Backscatter Waveforms on the Accuracy of Laser Sounding[J]. Geomatics and Information Science of Wuhan University, 2018, 43(4): 548-554. DOI: 10.13203/j.whugis20150652
Citation: LI Kai, ZHANG Yongsheng, TONG Xiaochong, HAN Shuo. The Impact of Different Fitting Functions for Water Backscatter Waveforms on the Accuracy of Laser Sounding[J]. Geomatics and Information Science of Wuhan University, 2018, 43(4): 548-554. DOI: 10.13203/j.whugis20150652

The Impact of Different Fitting Functions for Water Backscatter Waveforms on the Accuracy of Laser Sounding

Funds: 

The National Natural Science Foundation of China 41201392

Henan Polytechnic University's Key Laboratory of Mine Spatial Information Technologies of National Adminisration of Surveying, Mapping & Geoinformation KLM201404

More Information
  • Author Bio:

    LI Kai, postgraduate, specializes in airborne LiDAR bathymetry technology.E-mail: likai_rs@163.com

  • Received Date: April 04, 2016
  • Published Date: April 04, 2018
  • Considering the physical process of laser sounding echo signal formation, a fitting method using exponential function to simulate water column contribution in Lidar waveforms is proposed on the basis of the existing Lidar waveforms fitting method. In order to compare and test the new method, pluralities of sets of simulated data sets are generated for further analyses. For each detectable echoes, the sea surface echoes and the seabed echoes are fitted by Gauss function, and the backscattering echoes are fitted by triangle, quadrilateral and exponential function. The results show significantly more accurate laser sounding estimates for the use of exponential function method compared with the use of a triangular function or a quadrilateral function to fit the column contribution. Moreover, exponential function is more suitable for fitting water column contribution in Lidar waveforms of different water quality and water depth. Meanwhile, the paper examines the impact of the volume scattering function at 180° on laser sounding estimates.
  • [1]
    Jutzi B, Stilla U. Laser Pulse Analysis for Reconstruction and Classification of Urban Objects[J].International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 2003, 34(3/W8):151-156 http://www.researchgate.net/publication/26919955_Laser_pulse_analysis_for_reconstruction_and_classification_of_urban_objects
    [2]
    Hofton M A, Minster J B, Blair J B. Decomposition of Laser Altimeter Waveforms[J].IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(4):1989-1996 doi: 10.1109/36.851780
    [3]
    Roncat A, Wagner W, Melzer T, et al. Echo Detection and Localization in Full-Waveform Airborne Laser Scanner Data Using the Averaged Square Difference Function Estimator[J]. Photogrammetric Journal of Finland, 2008, 21(1):62-75 https://www.researchgate.net/publication/248359607_Echo_Detection_and_Localization_in_Full-Waveform_Airborne_Laser_Scanner_Data_using_the_Averaged_Square_Difference_Function_Estimator
    [4]
    Tulldahl H M, Steinvall K O. Analytical Waveform Generation from Small Objects in LiDAR Bathymetry[J].Applied Optics, 1999, 38(6):1021-1039 doi: 10.1364/AO.38.001021
    [5]
    Guenther G C, Cunningham A G, Larocque P E, et al. Meeting the Accuracy Challenge in Airborne LiDAR Bathymetry[J]. Proc. Earsel Symp. Workshop on LiDAR Remote Sensing of Land & Sea, 2000(1):1-27 http://agris.fao.org/agris-search/search.do?recordID=AV20120133452
    [6]
    Guenther G C, Mesick H C. Analysis of Airborne Laser Hydrography Waveforms[C]. International Society for Optics and Photonics Orlando Technical Symposium, Orlando, 1988 http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=1252318
    [7]
    Wong H, Antoniou A. Characterization and Decomposition of Waveforms for LARSEN 500 Airborne System[J]. IEEE Transactions on Geoscience and Remote Sensing, 1991, 29(6):912-921 doi: 10.1109/36.101370
    [8]
    Allouis T, Bailly J S, Pastol Y, et al. Comparison of LiDAR Waveform Processing Methods for very Shallow Water Bathymetry Using Raman, Near-Infrared and Green Signals[J]. Earth Surface Processes and Landforms, 2010, 35(6):640-650 https://www.researchgate.net/publication/229804649_Comparison_of_LiDAR_Waveform_Processing_Methods_for_Very_Shallow_Water_Bathymetry_Using_Raman_Near-Infrared_and_Green_Signals
    [9]
    Abdallah H, Baghdadi N, Bailly J S, et al. Wa-LiD:A New LiDAR Simulator for Waters[J]. IEEE Geoscience and Remote Sensing Letters, 2012, 9(4):744-748 doi: 10.1109/LGRS.2011.2180506
    [10]
    Abdallah H, Bailly J S, Baghdadi N N, et al. Potential of Space-Borne LiDAR Sensors for Global Bathymetry in Coastal and Inland Waters[J]. Selected Topics in IEEE Journal of Applied Earth Observations and Remote Sensing, 2013, 6(1):202-216 doi: 10.1109/JSTARS.2012.2209864
    [11]
    Abady L, Bailly J S, Baghdadi N, et al. Assessment of Quadrilateral Fitting of the Water Column Contribution in LiDAR Waveforms on Bathymetry Estimates[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(4):813-817 doi: 10.1109/LGRS.2013.2279271
    [12]
    Cook R L, Torrance K E. A Reflectance Model for Computer Graphics[J]. ACM Transactions on Graphics (TOG), 1982(1):7-24
    [13]
    Wang C, Li Q, Liu Y, et al. A Comparison of Waveform Processing Algorithms for Single-Wavelength LiDAR Bathymetry[J].ISPRS Journal of Photogrammetry and Remote Sensing, 2015(101):22-35 https://www.sciencedirect.com/science/article/pii/S0924271614002718
    [14]
    Mobley C D. Light and Water:Radiative Transfer in Natural Waters[M]. New York:Academic Press, 1994
    [15]
    Petzold T J. Volume Scattering Functions for Selected Ocean Waters[R]. San Diego: Scripps Institution of Oceanography, 1972
    [16]
    Marquardt D W. An Algorithm for Least-Squares Estimation of Nonlinear Parameters[J]. Journal of the Society for Industrial & Applied Mathematics, 1963, 11(2):431-441 doi: 10.1137/0111030
  • Related Articles

    [1]LI Da, QU Wei, ZHANG Qin, LI Jiuyuan, LING Qing. Landslide Displacement Prediction Model Integrating Multi-layer Perceptron and Optimized Support Vector Regression[J]. Geomatics and Information Science of Wuhan University, 2023, 48(8): 1380-1388. DOI: 10.13203/j.whugis20210703
    [2]ZHANG Yixiao, ZHAO Zhongguo, ZHENG Jianghua. Estimation of Reference Crop Evapotranspiration Under Different Combination of Meteorological Elements Using Multivariate Adaptive Regression Splines[J]. Geomatics and Information Science of Wuhan University, 2022, 47(5): 789-798. DOI: 10.13203/j.whugis20190337
    [3]XU Shan, ZOU Bin, WANG Min, LIU Ning. Performance Comparison of Artificial Neural Network and Kriging in Spatial Estimation of PM2.5 Concentration[J]. Geomatics and Information Science of Wuhan University, 2020, 45(10): 1642-1650. DOI: 10.13203/j.whugis20180482
    [4]XU Yanfang, LIU Wenyao, WU Bing, HUANG Min. Application of Neural Network in Color Conversion[J]. Geomatics and Information Science of Wuhan University, 2006, 31(9): 799-801.
    [5]YU Liang, BIAN Fuling. Application of Rough Set-Based Neural Network in Forest Fire Alarm[J]. Geomatics and Information Science of Wuhan University, 2006, 31(8): 720-723.
    [6]HU Yaogai, LI Wei, HU Jiming. An Artificial Neural Network with Improved Activation Function and Its Application[J]. Geomatics and Information Science of Wuhan University, 2004, 29(10): 916-919.
    [7]SHAO Lixia, HE Zongyi, AI Zixing, SONG Xiaodong. Automatic Generalization of River Network Based on BP Neural Network Techniques[J]. Geomatics and Information Science of Wuhan University, 2004, 29(6): 555-557.
    [8]XIAO Ping, LI Deren. Land Use/Cover Change Detection Based on Artificial Neural Network[J]. Geomatics and Information Science of Wuhan University, 2002, 27(6): 586-590.
    [9]Shen Weiming, Zhang Zuxun, Zhang Jianqing. Image Matching by Neural Network Based Relaxation[J]. Geomatics and Information Science of Wuhan University, 1996, 21(3): 247-251.
    [10]Huang Wenqian. Recognition of Point-shaped Map Symbols with a New Neural Network Model[J]. Geomatics and Information Science of Wuhan University, 1996, 21(1): 46-49.
  • Cited by

    Periodical cited type(1)

    1. 吴静,傅优杰,程朋根. 基于粗糙集的局部同位模式挖掘算法. 测绘通报. 2022(10): 80-85+104 .

    Other cited types(3)

Catalog

    Article views (1695) PDF downloads (283) Cited by(4)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return