Citation: | LI Kai, ZHANG Yongsheng, TONG Xiaochong, HAN Shuo. The Impact of Different Fitting Functions for Water Backscatter Waveforms on the Accuracy of Laser Sounding[J]. Geomatics and Information Science of Wuhan University, 2018, 43(4): 548-554. DOI: 10.13203/j.whugis20150652 |
[1] |
Jutzi B, Stilla U. Laser Pulse Analysis for Reconstruction and Classification of Urban Objects[J].International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 2003, 34(3/W8):151-156 http://www.researchgate.net/publication/26919955_Laser_pulse_analysis_for_reconstruction_and_classification_of_urban_objects
|
[2] |
Hofton M A, Minster J B, Blair J B. Decomposition of Laser Altimeter Waveforms[J].IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(4):1989-1996 doi: 10.1109/36.851780
|
[3] |
Roncat A, Wagner W, Melzer T, et al. Echo Detection and Localization in Full-Waveform Airborne Laser Scanner Data Using the Averaged Square Difference Function Estimator[J]. Photogrammetric Journal of Finland, 2008, 21(1):62-75 https://www.researchgate.net/publication/248359607_Echo_Detection_and_Localization_in_Full-Waveform_Airborne_Laser_Scanner_Data_using_the_Averaged_Square_Difference_Function_Estimator
|
[4] |
Tulldahl H M, Steinvall K O. Analytical Waveform Generation from Small Objects in LiDAR Bathymetry[J].Applied Optics, 1999, 38(6):1021-1039 doi: 10.1364/AO.38.001021
|
[5] |
Guenther G C, Cunningham A G, Larocque P E, et al. Meeting the Accuracy Challenge in Airborne LiDAR Bathymetry[J]. Proc. Earsel Symp. Workshop on LiDAR Remote Sensing of Land & Sea, 2000(1):1-27 http://agris.fao.org/agris-search/search.do?recordID=AV20120133452
|
[6] |
Guenther G C, Mesick H C. Analysis of Airborne Laser Hydrography Waveforms[C]. International Society for Optics and Photonics Orlando Technical Symposium, Orlando, 1988 http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=1252318
|
[7] |
Wong H, Antoniou A. Characterization and Decomposition of Waveforms for LARSEN 500 Airborne System[J]. IEEE Transactions on Geoscience and Remote Sensing, 1991, 29(6):912-921 doi: 10.1109/36.101370
|
[8] |
Allouis T, Bailly J S, Pastol Y, et al. Comparison of LiDAR Waveform Processing Methods for very Shallow Water Bathymetry Using Raman, Near-Infrared and Green Signals[J]. Earth Surface Processes and Landforms, 2010, 35(6):640-650 https://www.researchgate.net/publication/229804649_Comparison_of_LiDAR_Waveform_Processing_Methods_for_Very_Shallow_Water_Bathymetry_Using_Raman_Near-Infrared_and_Green_Signals
|
[9] |
Abdallah H, Baghdadi N, Bailly J S, et al. Wa-LiD:A New LiDAR Simulator for Waters[J]. IEEE Geoscience and Remote Sensing Letters, 2012, 9(4):744-748 doi: 10.1109/LGRS.2011.2180506
|
[10] |
Abdallah H, Bailly J S, Baghdadi N N, et al. Potential of Space-Borne LiDAR Sensors for Global Bathymetry in Coastal and Inland Waters[J]. Selected Topics in IEEE Journal of Applied Earth Observations and Remote Sensing, 2013, 6(1):202-216 doi: 10.1109/JSTARS.2012.2209864
|
[11] |
Abady L, Bailly J S, Baghdadi N, et al. Assessment of Quadrilateral Fitting of the Water Column Contribution in LiDAR Waveforms on Bathymetry Estimates[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(4):813-817 doi: 10.1109/LGRS.2013.2279271
|
[12] |
Cook R L, Torrance K E. A Reflectance Model for Computer Graphics[J]. ACM Transactions on Graphics (TOG), 1982(1):7-24
|
[13] |
Wang C, Li Q, Liu Y, et al. A Comparison of Waveform Processing Algorithms for Single-Wavelength LiDAR Bathymetry[J].ISPRS Journal of Photogrammetry and Remote Sensing, 2015(101):22-35 https://www.sciencedirect.com/science/article/pii/S0924271614002718
|
[14] |
Mobley C D. Light and Water:Radiative Transfer in Natural Waters[M]. New York:Academic Press, 1994
|
[15] |
Petzold T J. Volume Scattering Functions for Selected Ocean Waters[R]. San Diego: Scripps Institution of Oceanography, 1972
|
[16] |
Marquardt D W. An Algorithm for Least-Squares Estimation of Nonlinear Parameters[J]. Journal of the Society for Industrial & Applied Mathematics, 1963, 11(2):431-441 doi: 10.1137/0111030
|
[1] | CAI Xianhua, LIU Kaili, HU Zhuoliang, ZHANG Yuan. An Algorithm for Constructing Road Network Using Block Polygon Topology[J]. Geomatics and Information Science of Wuhan University, 2021, 46(8): 1170-1177. DOI: 10.13203/j.whugis20190348 |
[2] | YANG Wei, AI Tinghua. Extracting Arterial Road Polygon from OpenStreetMap Data Based on Delaunay Triangulation[J]. Geomatics and Information Science of Wuhan University, 2018, 43(11): 1725-1731. DOI: 10.13203/j.whugis20160294 |
[3] | ZHANG Hao, WU Fang, GONG Xianyong, XU Junkui, ZHANG Juntao. A Parallel Factor-Based Method of Arterial Two-Lane Roads Recognition[J]. Geomatics and Information Science of Wuhan University, 2017, 42(8): 1123-1130. DOI: 10.13203/j.whugis20150122 |
[4] | WANG Xiao, QIAN Haizhong, LIU Hailong, HE Haiwei, CHEN Jingnan. A Hierarchical and Iterative Road Network Matching Method by Using Road Classification[J]. Geomatics and Information Science of Wuhan University, 2016, 41(8): 1072-1078. DOI: 10.13203/j.whugis20140441 |
[5] | LIU Hailong, QIAN Haizhong, WANG Xiao, HE Haiwei. Road Networks Global Matching Method Using Analytical Hierarchy Process[J]. Geomatics and Information Science of Wuhan University, 2015, 40(5): 644-651. DOI: 10.13203/j.whugis20130350 |
[6] | LI Fei, LUAN Xuechen, YANG Bisheng, LI Qiuping. Automatic Topology Maintenance Approach for High-level Road Networks[J]. Geomatics and Information Science of Wuhan University, 2014, 39(6): 729-733. DOI: 10.13203/j.whugis20140115 |
[7] | LUAN Xuechen, YANG Bisheng, ZHANG Yunfei. Structural Hierarchy Analysis of Streets Based on Complex Network Theory[J]. Geomatics and Information Science of Wuhan University, 2012, 37(6): 728-732. |
[8] | LI Qingquan, ZENG Zhe, YANG Bisheng, LIBijun. Betweenness Centrality Analysis for Urban Road Networks[J]. Geomatics and Information Science of Wuhan University, 2010, 35(1): 37-41. |
[9] | ZHU Qing, LI Yuan. Review of Road Network Models[J]. Geomatics and Information Science of Wuhan University, 2007, 32(6): 471-476. |
[10] | DENG Hongyan, WU Fang, ZHAI Renjian. A Generalization Model of Road Networks Based on Genetic Algorithm[J]. Geomatics and Information Science of Wuhan University, 2006, 31(2): 164-167. |