WEI Ran, SHAN Jie. Spatial and Temporal Fusion for Urban Land Surface Temperature Image Mapping[J]. Geomatics and Information Science of Wuhan University, 2018, 43(3): 428-435. DOI: 10.13203/j.whugis20150489
Citation: WEI Ran, SHAN Jie. Spatial and Temporal Fusion for Urban Land Surface Temperature Image Mapping[J]. Geomatics and Information Science of Wuhan University, 2018, 43(3): 428-435. DOI: 10.13203/j.whugis20150489

Spatial and Temporal Fusion for Urban Land Surface Temperature Image Mapping

Funds: 

The National Program on Key Basic Research of China(973 Program) 2012CB719904

More Information
  • Author Bio:

    WEI Ran, PhD, specializes in land surface temperature retrieve and spatiotemporal fusion. E-mail: weiran85@whu.edu.cn

  • Received Date: March 23, 2016
  • Published Date: March 04, 2018
  • Land surface temperature (LST) is one of the most important parameters in the physical processes of surface energy and water balance. Due to the payload limit and the technical bottleneck of the sensor, it is difficult to obtain land surface temperature products with both high spatial and high temporal resolutions, which restricts applications of land surface temperature products. Based on MODIS and ETM+ images, this paper combines the enhanced spatial and temporal adaptive reflectance fusion model(ESTARFM) with the non-linear disaggregation procedure for radiometric surface temperature (NL-DisTrad) to generate daily land surface temperature products of urban area at a resolution of 60m. We use the actual land surface temperature products in July 9 and October 13 of 2002 over Wuhan urban areas to verify the quality of fusion products. It is shown their R2 are as high as 0.80 and 0.86, respectively, and the RMSE are 2.65 K and 1.78 K, respectively. The results show that the proposed algorithm has fine prospects in the spatial and temporal land surface temperature fusion applications in urban areas.
  • [1]
    Voogt J A, Oke T R. Thermal Remote Sensing of Urban Climates[J]. Remote Sensing of Environment, 2003, 86(3):370-384 doi: 10.1016/S0034-4257(03)00079-8
    [2]
    Gao F, Masek J, Schwaller M, et al. On The Blending of the Landsat and MODIS Surface Reflectance:Predicting Daily Landsat Surface Reflectance[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(8):2207-2218 doi: 10.1109/TGRS.2006.872081
    [3]
    Hilker T, Wulder M A, Coops N C, et al. A New Data Fusion Model For High Spatial-and Temporal-Resolution Mapping of Forest Disturbance Based on Landsat and MODIS[J]. Remote Sensing of Environment, 2009, 113(8):1613-1627 doi: 10.1016/j.rse.2009.03.007
    [4]
    Zhu X, Chen J, Gao F, et al. An Enhanced Spatial and Temporal Adaptive Reflectance Fusion Model for Complex Heterogeneous Regions[J]. Remote Sensing of Environment, 2010, 114:2610-2623 doi: 10.1016/j.rse.2010.05.032
    [5]
    邬明权, 王洁, 牛铮, 等.融合MODIS与Landsat数据生成高时间分辨率Landsat数据[J].红外与毫米波学报, 2012, 31(1):80-84 http://kns.cnki.net/KCMS/detail/detail.aspx?filename=hwyh201201015&dbname=CJFD&dbcode=CJFQ

    Wu Mingquan, Wang Jie, Niu Zheng, et al. A Model For Spatial and Temporal Data Fusion[J]. Journal of Infrared and Millimeter Waves, 2012, 31(1):80-84 http://kns.cnki.net/KCMS/detail/detail.aspx?filename=hwyh201201015&dbname=CJFD&dbcode=CJFQ
    [6]
    Shen H F, Wu P H, Liu Y L, et al. A Spatial and Temporal Reflectance Fusion Model Considering Sensor Observation Differences[J].International Journal of Remote Sensing, 2013, 34(12):4367-4383 doi: 10.1080/01431161.2013.777488
    [7]
    Anderson M C, Kustas W P, Norman J M, et al. Mapping Daily Evapotranspiration at Field to Continental Scales Using Geostationary and Polar Orbiting Satellite Imagery[J]. Hydrology and Earth System Sciences, 2011, 15(1):223-239 doi: 10.5194/hess-15-223-2011
    [8]
    Liu H, Weng Q H. Enhancing Temporal Resolution of Satellite Imagery for Public Health Studies:A Case Study of West Nile Virus Outbreak in Los Angeles in 2007[J]. Remote Sensing of Environment, 2012, 117:57-71 doi: 10.1016/j.rse.2011.06.023
    [9]
    Huang B, Wang J, Song H H, et al. Generating High Spatiotemporal Resolution Land Surface Temperature for Urban Heat Island Monitoring[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(5):1011-1015 doi: 10.1109/LGRS.2012.2227930
    [10]
    Weng Q H, Fu P, Gao F. Generating Daily Land Surface Temperature at Landsat Resolution by Fusing Landsat and MODIS Data[J]. Remote Sensing of Environment, 2014, 145:55-67 doi: 10.1016/j.rse.2014.02.003
    [11]
    Wu P H, Shen H F, Zhang L P, et al. Integrated Fusion of Multi-scale Polar-Orbiting and Geostationary Satellite Observations for the Mapping of High Spatial and Temporal Resolution Land Surface Temperature[J]. Remote Sensing of Environment, 2015, 156:169-181 doi: 10.1016/j.rse.2014.09.013
    [12]
    曹丽琴, 张良培, 李平湘, 等.城市下垫面覆盖类型变化对热岛效应影响的模拟研究[J].武汉大学学报·信息科学版, 2008, 33(12):1229-1232 http://ch.whu.edu.cn/CN/abstract/abstract1788.shtml

    CaoLiqing, Zhang Liangpei, Li Pingxiang, et al. Simulation Study of Influence of Change of Land Surface Types on Urban Heat Island[J]. Geomatics and Information Science of Wuhan University, 2008, 33(12):1229-1232 http://ch.whu.edu.cn/CN/abstract/abstract1788.shtml
    [13]
    Zhan W F, Chen Y H, Zhou J, et al. Disaggregation of Remotely Sensed Land Surface Temperature:Literature Survey, Taxonomy, Issues, and Caveats[J]. Remote Sensing of Environment, 2013, 131:119-139 doi: 10.1016/j.rse.2012.12.014
    [14]
    全金玲, 占文凤, 陈云浩, 等.遥感地表温度降尺度方法比较:性能对比及适应性评价[J].遥感学报, 2013, 17(2):363-389 http://kns.cnki.net/KCMS/detail/detail.aspx?filename=ygxb201302012&dbname=CJFD&dbcode=CJFQ

    Quan Jinling, Zhan Wenfeng, Chen Yunhao, et al. Downscaling Remotely Sensed Land Surface Temperatures:A Comparison of Typical Methods[J]. Journal of Remote Sensing, 2013, 17(2):363-389 http://kns.cnki.net/KCMS/detail/detail.aspx?filename=ygxb201302012&dbname=CJFD&dbcode=CJFQ
    [15]
    Agam N, Kustas W P, Anderson M C, et al. A Vegetation Index Based Technique for Spatial Sharpening of Thermal Imagery[J]. Remote Sensing of Environment, 2007, 107:545-558 doi: 10.1016/j.rse.2006.10.006
    [16]
    Bindhu V M, Narasimhan B, Sudheer K P. Development and Verification of a Non-linear Disaggregation Method(NL-Distrad) to Downscale MODIS Land Surface Temperature to the Spatial Scale of Landsat Thermal Data to Estimate Evapotranspiration[J]. Remote Sensing of Environment, 2013, 135(1):118-129 https://www.sciencedirect.com/science/article/pii/S0034425713001028
    [17]
    Qin Z H, Karnieli A, Berliner P. A Mono-window Algorithm for Retrieving Land Surface Temperature from Landsat TM Data and its Application to the Israel-Egypt Border Region[J]. International Journal of Remote Sensing, 2001, 22(1):3719-3746 http://www.academia.edu/1913792/A_mono-window_algorithm_for_retrieving_land_surface_temperature_from_Landsat_TM_data_and_its_application_to_the_Israel-Egypt_border_region
  • Related Articles

    [1]ZHANG Fan, CHAI Hongzhou, WANG Min, XIAO Guorui, ZHANG Qiankun, DU Zhenqiang. Undifferenced and Uncombined PPP Ambiguity Resolution Combined with GPS/GLONASS Triple-Frequency Observations[J]. Geomatics and Information Science of Wuhan University, 2024, 49(10): 1900-1910. DOI: 10.13203/j.whugis20220315
    [2]SONG Weiwei, SONG Qisheng, HE Qianqian, GONG Xiaopeng, GU Shengfeng. Analysis of PPP-B2b Positioning Performance Enhanced by High-Precision Ionospheric Products[J]. Geomatics and Information Science of Wuhan University, 2024, 49(9): 1517-1526. DOI: 10.13203/j.whugis20230030
    [3]SONG Weiwei, ZHAO Xinke, LOU Yidong, SUN Weibin, ZHAO Zhengyu. Performance Evaluation of BDS-3 PPP-B2b Service[J]. Geomatics and Information Science of Wuhan University, 2023, 48(3): 408-415. DOI: 10.13203/j.whugis20200686
    [4]YAN Zhongbao, ZHANG Xiaohong. Partial Ambiguity Resolution Method and Results Analysis for GNSS Uncombined PPP[J]. Geomatics and Information Science of Wuhan University, 2022, 47(6): 979-989. DOI: 10.13203/j.whugis20220025
    [5]GU Shengfeng, DAI Chunqi, HE Chengpeng, FANG Lizhe, WANG Zihao. Analysis of Semi-tightly Coupled Multi-GNSS PPP-RTK/VIO for Vehicle Navigation in Urban Areas[J]. Geomatics and Information Science of Wuhan University, 2021, 46(12): 1852-1861. DOI: 10.13203/j.whugis20210615
    [6]YAO Yibin, FENG Xinying, PENG Wenjie, LIU Lei. Local Atmosphere Augmentation Based on CORS for Real-Time PPP[J]. Geomatics and Information Science of Wuhan University, 2019, 44(12): 1739-1748. DOI: 10.13203/j.whugis20180131
    [7]SONG Chao, HAO Jinming. Instantaneous Re-convergence of Kinematic PPP by the Use of Relationship Between Multiple Receiver Ambiguity[J]. Geomatics and Information Science of Wuhan University, 2017, 42(5): 595-599, 690. DOI: 10.13203/j.whugis20140747
    [8]GUO Fei, ZHANG Xiaohong. Processing Capacity for GPS Data with Clock Slip Using Online PPP Services[J]. Geomatics and Information Science of Wuhan University, 2012, 37(11): 1333-1336.
    [9]TU Rui, HUANG Guanwen, ZHANG Qin, WANG Li. The Research of Dual Frequency Solution Method for Single Frequency Precise Point Positioning(PPP) Based on SEID Model[J]. Geomatics and Information Science of Wuhan University, 2011, 36(10): 1187-1190.
    [10]ZHAO Jianhu, WANG Shengping, ZHANG Hongmei, WEN Weidong. Long-Distance and On-the-Fly GPS Tidal Level Measurement Based on GPS PPK/PPP[J]. Geomatics and Information Science of Wuhan University, 2008, 33(9): 910-913.
  • Cited by

    Periodical cited type(13)

    1. 冯晓亮,陈欢,李厚芝. 不同观测环境中的多模GNSS数据质量自动化检测方法. 测绘工程. 2024(06): 56-61 .
    2. 刘嘉伟,孙保琪,韩蕊,张喆,王侃,袁海波,杨旭海. GNSS多系统RTK授时性能分析. 导航定位与授时. 2023(03): 49-58 .
    3. 王浩浩,郝明,庄文泉. GNSS实时卫星钟差估计在地震监测中的应用. 导航定位与授时. 2023(03): 108-116 .
    4. 周长江,余海锋,王林伟,雷云平,岳彩亚. 无频间钟偏差改正的BDS-2三频非组合PPP随机模型优化. 测绘通报. 2023(12): 164-168 .
    5. 潘丽静,刘翔,夏川茹,王雷雷. GNSS精密卫星钟差实时估计与分析. 城市勘测. 2021(06): 73-76 .
    6. 郭磊,王甫红,桑吉章,张万威. 一种新的利用历元间位置变化量约束的GNSS导航算法. 武汉大学学报(信息科学版). 2020(01): 21-27 .
    7. 陶钧,张柔. GPS/BeiDou/Galileo/GLONASS实时精密卫星钟差估计. 测绘地理信息. 2020(03): 102-106 .
    8. 黄观文,王浩浩,谢威,曹钰. GNSS实时卫星钟差估计技术进展. 导航定位与授时. 2020(05): 1-9 .
    9. 张浩,赵兴旺,陈佩文,谢毅. GPS/BDS卫星钟差融合解算模型及精度分析. 合肥工业大学学报(自然科学版). 2020(09): 1192-1196 .
    10. 叶珍,李浩军. GNSS卫星钟差估计与结果分析. 导航定位与授时. 2019(03): 88-94 .
    11. 盛剑锋,张彩红,谭凯. 一种全球导航卫星系统钟差估计优化方案的量化研究. 科学技术与工程. 2019(14): 14-21 .
    12. 王尔申,赵珩,曲萍萍,庞涛,孙军. 基于拉格朗日插值法的卫星导航空间信号精度评估算法. 沈阳航空航天大学学报. 2019(04): 43-48 .
    13. 李云,崔文刚. 精密单点定位技术发展及应用. 科学技术与工程. 2019(27): 1-11 .

    Other cited types(10)

Catalog

    Article views PDF downloads Cited by(23)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return