WANG Mi, ZHENG Xinghui, CHENG Yufeng, CHEN Xiao. Scheme and Key Technologies of Autonomous Optical Navigation for Mars Exploration in Cruise and Capture Phase[J]. Geomatics and Information Science of Wuhan University, 2016, 41(4): 434-442. DOI: 10.13203/j.whugis20150293
Citation: WANG Mi, ZHENG Xinghui, CHENG Yufeng, CHEN Xiao. Scheme and Key Technologies of Autonomous Optical Navigation for Mars Exploration in Cruise and Capture Phase[J]. Geomatics and Information Science of Wuhan University, 2016, 41(4): 434-442. DOI: 10.13203/j.whugis20150293

Scheme and Key Technologies of Autonomous Optical Navigation for Mars Exploration in Cruise and Capture Phase

Funds: The National Basic Research Program of China(973 Program), No.2014CB744201; the National Natural Science Foundation of China, No.91438111.
More Information
  • Received Date: May 14, 2015
  • Published Date: April 04, 2016
  • Mars exploration is one of the most important major deep space exploration projects. Some problems, such as navigation accuracyandsignal real-time transmission, exist in radio navigation because of the communication latency and occlusion of celestial bodies. Autonomous optical navigation is a key technology for mars exploration and could act as an important auxiliary for radio navigation. This paper focuses on the scheme and key technologies for autonomous optical navigation in mars exploration durling the cruise and capture phase. Firstly, some concept and scheme of autonomous optical navigation have been discussed, in which the optical navigation measurement model has been introduced for defining the relationship between celestialandoptical navigation camera, and the navigation scheme for marsexploration in cruise and capture phase has been formulated too. Secondly, some key technologies focusing on navigation image processing, on-orbit calibration for optical navigation camera and optical autonomous navigation filter design have been fully presented. In further research, these key technologies could take the advantage of the theoretical basis of Deep-space Photogrammetry.
  • [1]
    Cui Pingyuan, Xu rui, Zhu Shengying, et al. State of the Art and Development Trends of On-board Autonomy Technology for Deep Space Explorer[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(1):13-28(崔平原, 徐睿, 朱圣英,等. 深空探测器自主技术发展与趋势[J]. 航空学报, 2014,35(1):13-28)
    [2]
    Wang Dayi, Huang Xiangyu. Survey of Autonomous Navigation and Control for Deep Space Exploration[J]. Aerospace Control and Application,2009,35(3):6-12(王大轶, 黄翔宇. 深空探测自主导航与控制技术综述[J]. 空间控制技术与应用, 2009,35(3):6-12)
    [3]
    Cui Wen. Research on Optical Autonomous Navigation for Deep Space Exploration[D]. Beijing:Tsinghua University,2012(崔文. 深空探测光学自主导航研究[D].北京:清华大学,2012)
    [4]
    Zhang Wei. Basic Research on Optical Autonomous Navigation of High Accuracy Angle Measurement Combined with Speed Measurement for Deep Space Exploration[R]. Ministry of Science and Technology of the People's Republic of China, 2013(张伟. 深空探测高精度天文测角测速组合自主导航基础研究[R]. 中华人民共和国科学技术部,2013)
    [5]
    Joseph E R, Anderew T V, Robert A W, et al. Optical Navigation Plan and Strategy for the Lunar Lander Altair[C].AIAA Guidance, Navigation, and Control Conference, Toronto, Ontario Canada, 2010
    [6]
    Owen Jr, William M. Methods of Optical Navigation[J]. Advances in the Astronautical Sciences, 2011,140:1635-1653
    [7]
    Lightsey G E, Christian J A. Onboard Image-processing Algorithm for a Spacecraft Optical Navigation Sensor System[J]. Journal of Spacecraft and Rockets, 2012,49(2):337-352
    [8]
    Giannitrapani A, Ceccarelli N, Scortecci F, et al. Comparison of EKF and UKF for Spacecraft Localization via Angle Measurements[J]. IEEE Transactions on Aerospace and Electronic Systems, 2011,47(1):75-84
    [9]
    Riedel J E, Bhaskaran S, Desai S, et al. Deep Space 1 Technology Validation Report-autonomous Optical Navigation[R].JPL Technology Report,2000,1-39
    [10]
    Polle B, Frapard B, Saint-Pe O, et al. Autonomous On-board Navigation for Interplanetary Missions[J]. Advances in the Astronautical Sciences,2003,113:227-293
    [11]
    Chausson L, Elavault S. Optical Navigation Performance During Interplanetary Cruise[C]. 17th ISSFD, Russia, Moscow, 2003
    [12]
    Christian J A, Glenn L E. An On-board Image Processing Algorithm for a Spacecraft Optical Navigation Sensor System[C]. AIAA SPACE, Anaheim, California, 2010
    [13]
    Gander W, Golub G H, Strebel R. Least-squares Fitting of Circles and Ellipses[J]. BIT Numerical Mathematics, 1994, 34(4):558-578
    [14]
    Graf J E, Zurek R W, Eisen H J, et al. The Mars Reconnaissance Orbiter Mission[J]. Acta Astronautica, 2005, 57(2):566-578
    [15]
    Sun Chunsheng, Wu Jun. Deblurring Texture Extracted from Digital Aerial Images by Reforming "Step Edge" Curve[J]. Geomatics and Information Science of Wuhan University, 2005, 30(3):254-259(孙春生,吴军.基于"刀刃"曲线特性的航空影像纹理视觉改善研究[J]. 武汉大学学报·信息科学版,2005,30(3):254-259)
    [16]
    Gao Guorong, Xu Luping, Feng Dongzhu. Image Denoising Based on the NSST Domain GSM Model[J]. Geomatics and Information Science of Wuhan University, 2013, 38(7):778-782(高国荣,许录平,冯冬竹.利用非抽样Shearlet域GSM模型进行图像去噪[J]. 武汉大学学报·信息科学版,2013,38(7):778-782)
    [17]
    Wang M, Yang B, Hu F, et al. On-orbit Geometric Calibration Model and Its Applications for High-Resolution Optical Satellite Imagery[J]. Remote Sensing, 2014, 6(5):4391-4408
    [18]
    Wang Jian, Liu Chao, Gao Jingxiang, et al. GNSS/INS Tightly Coupled Navigation Model Based on Robust EKF[J]. Geomatics and Information Science of Wuhan University, 2011, 36(5):596-600(王坚,刘超,高井祥,等.基于抗差EKF的GNSS/INS紧组合算法研究[J]. 武汉大学学报·信息科学版,2011,36(5):596-600)
    [19]
    Cai Zhiwu, Zhao Dongming. Unscented Kalman Filter for Nonlinear Estimation[J]. Geomatics and Information Science of Wuhan University, 2006, 31(2):180-183(蔡志武,赵东明.UKF滤波器性能分析及其在轨道计算中的仿真试验[J]. 武汉大学学报·信息科学版2006,31(2):180-183)
  • Related Articles

    [1]YU Daocheng, HWANG Jinway, ZHU Huizhong, LUO Jia, YUAN Jiajia. Enhancing Marine Gravity Field Precision Using SWOT Wideswath Altimetry Data: a Comparative Analysis with Traditional Altimetry Satellites[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20240120
    [2]HE Huiyou, FANG Jian. Gravity Anomaly Spectrum Analysis Method and Its Application[J]. Geomatics and Information Science of Wuhan University, 2023, 48(12): 2092-2102. DOI: 10.13203/j.whugis20200510
    [3]XING Zhibin, LI Shanshan, WANG Wei, FAN Haopeng. Fast Approach to Constructing Normal Equation During the Time of Calculating Height Anomaly Difference by Using Vertical Deflections[J]. Geomatics and Information Science of Wuhan University, 2016, 41(6): 778-783. DOI: 10.13203/j.whugis20140491
    [4]DU Jinsong, CHEN Chao, LIANG Qing, ZHANG Yi. Lunar Gravity Anomaly and Its Computational Method[J]. Geomatics and Information Science of Wuhan University, 2012, 37(11): 1369-1373.
    [5]LI Zhenhai, LUO Zhicai, WANG Haihong, ZHONG Bo. Requirements for Gravity Data Within the Given Accuracy of the Interpolated Gravity Anomaly[J]. Geomatics and Information Science of Wuhan University, 2011, 36(11): 1328-1331.
    [6]WU Yunsun, CHAO Dingbo, LI Jiancheng, WANG Zhengtao. Recovery of Ocean Depth Model of South China Sea from Altimetric Gravity Gradient Anomalies[J]. Geomatics and Information Science of Wuhan University, 2009, 34(12): 1423-1425.
    [7]WANG Haihong, NING Jinsheng, LUO Zhicai, LUO Jia. Separation of Gravity Anomalies Based on Multiscale Edges[J]. Geomatics and Information Science of Wuhan University, 2009, 34(1): 109-112.
    [8]CHAO Dingbo, YAO Yunsheng, LI Jiancheng, XU Jusheng. Interpretaion on the Tectonics and Characteristics of Altimeter-derived Gravity Anomalies in China South Sea[J]. Geomatics and Information Science of Wuhan University, 2002, 27(4): 343-347.
    [9]Huang Motao, Guan Zheng, Ouyang Yongzhong. Calculation and Accuracy Estimation of Marine Mean Free-Air Gravity Anomaly[J]. Geomatics and Information Science of Wuhan University, 1995, 20(4): 327-331.
    [10]Guan Zelin, E Dongchen. The Computation of Geoidal Undulation Deflection of Vertical and Gravity Anomalies Using Clenshaw Summation[J]. Geomatics and Information Science of Wuhan University, 1986, 11(4): 75-82.
  • Cited by

    Periodical cited type(10)

    1. 费婷婷,丁晓婷,阙翔,林津,林健,王紫薇,刘金福. 基于SBM-DEA与STWR模型的中国能源碳排放效率时空异质性分析. 环境工程. 2024(10): 188-200 .
    2. 熊景华,郭生练,王俊,尹家波,李娜. 长江流域陆地水储量变化及归因研究. 武汉大学学报(信息科学版). 2024(12): 2241-2248 .
    3. 姜栋,赵文吉,王艳慧,万碧玉. 地理加权回归的城市道路时空运行态势空间网格计算方法. 武汉大学学报(信息科学版). 2023(06): 988-996 .
    4. 倪杰,吴通华,赵林,李韧,谢昌卫,吴晓东,朱小凡,杜宜臻,杨成,郝君明. 环北极多年冻土区碳循环研究进展与展望. 冰川冻土. 2019(04): 845-857 .
    5. 刘大元,张雪梅,岳跃民,王克林,邹冬生. 基于Geodetector的广西喀斯特植被覆盖变化及其影响因素分析. 农业现代化研究. 2019(06): 1038-1047 .
    6. 肖屹,何宗宜,苗静,潘峰,杨好. 利用搜索引擎数据模拟疾病空间分布. 测绘通报. 2018(02): 94-98 .
    7. 苗月鲜,方秀琴,吴小君,吴陶樱. 基于GWR模型的江西省山洪灾害区域异同性研究. 水土保持通报. 2018(01): 313-318+327 .
    8. 陈吕凤,朱国平. 基于地理加权模型的南设得兰群岛北部南极磷虾渔场空间分布影响分析. 应用生态学报. 2018(03): 938-944 .
    9. 张雪梅,王克林,岳跃民,童晓伟,廖楚杰,张明阳,姜岩. 生态工程背景下西南喀斯特植被变化主导因素及其空间非平稳性. 生态学报. 2017(12): 4008-4018 .
    10. 陈广威,陈吕凤,朱国平,徐玉成,田靖寰,丁博. 南乔治亚岛冬季南极磷虾渔场时空分布及其驱动因子. 生态学杂志. 2017(10): 2803-2810 .

    Other cited types(10)

Catalog

    Article views PDF downloads Cited by(20)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return