Cheng Kongzhe, Zhu Xinyan, Zhang Yinzhou, Su Guangkui. Study on Automatic Chinese-Label Placement[J]. Geomatics and Information Science of Wuhan University, 1997, 22(2): 136-141.
Citation: Cheng Kongzhe, Zhu Xinyan, Zhang Yinzhou, Su Guangkui. Study on Automatic Chinese-Label Placement[J]. Geomatics and Information Science of Wuhan University, 1997, 22(2): 136-141.

Study on Automatic Chinese-Label Placement

More Information
  • Received Date: January 23, 1997
  • Published Date: February 04, 1997
  • Labels are an important ingredient in map. Whether labels are in place or not it plays an important role on the readability and usefulness of a map. However, in computer cartography, it is common knowledge that the labeling effect and speed are not ideal yet. Today, even though some other areas of computer cartography have been greatly improved, the automatic label placement is still a great problem. So more researches should be put into label placement. But recent mathematical analysis of cartographic label placement task has shown that finding optimal labeling is prohibitive due to the inherent computational complexity of the problem. This result implies that seeking an efficient algorithm for optimal label placement is a hopeless task. What we can do is to find near-optimal labelings in a reasonable time. This paper provides an optimal labeling algorithm based on backtracking,the algorithm has been put into practice and gotten better effect than some other optimal labeling algorithms.
  • Related Articles

    [1]CHEN Chao, ZOU Rong, LIU Renli. Vertical Deformation of Seasonal Hydrological Loading in Southern Tibet Detected by Joint Analysis of GPS and GRACE[J]. Geomatics and Information Science of Wuhan University, 2018, 43(5): 669-675. DOI: 10.13203/j.whugis20150684
    [2]WANG Xingxing, LI Fei, HAO Weifeng, ZHANG Shengkai, YANG Yuande. Comparison of Several Filters in the Rates of Antarctic Ice Sheet Mass Change Based on GRACE RL05 Data[J]. Geomatics and Information Science of Wuhan University, 2016, 41(11): 1450-1457. DOI: 10.13203/j.whugis20140611
    [3]XU Caijun, GONG Zheng. Review of the Post-processing Methods on GRACE Time Varied Gravity Data[J]. Geomatics and Information Science of Wuhan University, 2016, 41(4): 503-510. DOI: 10.13203/j.whugis20140639
    [4]LIU Renli, LI Jiancheng, JIANG Weiping, LI Zhao. Comparing Vertical Surface Displacements Using GRACE and GPS over Shanxi Province[J]. Geomatics and Information Science of Wuhan University, 2013, 38(4): 426-430.
    [5]LIU Xiaogang, WU Xiaoping, JIANG Dong. Demonstration on the Indexes Design of Space-borne KBR and GPS Receiver in the Low-Low Satellite-to-Satellite Tracking Mode[J]. Geomatics and Information Science of Wuhan University, 2012, 37(5): 613-616.
    [6]ZHANG Shoujian, LI Jiancheng, ZOU Xiancai. Analysis of the Cross-talk Systematic Error in GPS Observation of GRACE Satellite and Its Impact on POD Results[J]. Geomatics and Information Science of Wuhan University, 2010, 35(11): 1331-1334.
    [7]ZHANG Shoujian, LI Jiancheng, ZOU Xiancai, JIN Taoyong. Analysis of Zero-Difference Kinematic POD for GRACE[J]. Geomatics and Information Science of Wuhan University, 2010, 35(6): 679-682.
    [8]XING Lelin, LI Jiancheng, LI Hui, SUN Wenke. Detection of Co-seismic and Post-seismic Deformation Caused by the Sumatra-Andaman Earthquake Using GRACE[J]. Geomatics and Information Science of Wuhan University, 2009, 34(9): 1080-1084.
    [9]YANG Yuande, E Dongchen, CHAO Dingbo. The Inversion of Ice Mass Change in Greenland Ice Sheet Using GRACE Data[J]. Geomatics and Information Science of Wuhan University, 2009, 34(8): 961-964.
    [10]NING Jinsheng, LUO Jia, WANG Haihong. Key Technique for Earth Gravity Field Determination in GRACE Model[J]. Geomatics and Information Science of Wuhan University, 2003, 28(S1): 13-17,37.

Catalog

    Article views (818) PDF downloads (221) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return