ZHAO Jun, GUI Qingming, GUO Feixiao. A New Algorithm of Weighted Total Least Squares Estimate of Partial EIV Model Based on an Improved Objective Function[J]. Geomatics and Information Science of Wuhan University, 2017, 42(8): 1179-1184. DOI: 10.13203/j.whugis20150180
Citation: ZHAO Jun, GUI Qingming, GUO Feixiao. A New Algorithm of Weighted Total Least Squares Estimate of Partial EIV Model Based on an Improved Objective Function[J]. Geomatics and Information Science of Wuhan University, 2017, 42(8): 1179-1184. DOI: 10.13203/j.whugis20150180

A New Algorithm of Weighted Total Least Squares Estimate of Partial EIV Model Based on an Improved Objective Function

Funds: 

The National Natural Science Foundation of China 41174005

The National Natural Science Foundation of China 41474009

State Key Laboratory of Geodesy and Earth′s Dynamics SKLGED 2017-3-2-E

State Key Laboratory of Geo-information Engineering SKLGIE2015-M-1-2

State Key Laboratory of Geo-information Engineering SKLGIE2015-M-3-2

More Information
  • Author Bio:

    ZHAO Jun, PhD, specializes in surveying data processing. E-mail: Zhaojun4368@163.com

  • Received Date: March 04, 2016
  • Published Date: August 04, 2017
  • The computation of weighted total least squares (WTLS) estimate of partial EIV model requires more iterations and more computation burden. Therefore, the study has proposed a new algorithm for computing the WTLS estimate of partial EIV model by improving objective function based on the weighted LS principle and applying the differential and inversion transformation of matrix. The results of numerical examples show that the new algorithm requires less iterations and more superior in the sense of computational efficiency.
  • [1]
    王乐洋. 基于总体最小二乘的大地测量反演理论及应用研究[D]. 武汉: 武汉大学, 2011

    Wang Leyang. Research on Theory and Application of Total Least Squares in Geodetic Inversion[D]. Wuhan:Wuhan University, 2011
    [2]
    王乐洋, 许才军.总体最小二乘研究进展[J].武汉大学学报·信息科学版, 2013, 38(7):850-856 http://ch.whu.edu.cn/CN/abstract/abstract2703.shtml

    Wang Leyang, Xu Caijun. Progress in Total Least Squares[J]. Geomatics and Inforamtion Science of Wuhan University, 2013, 38(7):850-856 http://ch.whu.edu.cn/CN/abstract/abstract2703.shtml
    [3]
    Schaffrin B, Wieser A. On Weighted Total Least-Squares Adjustment for Linear Regression[J]. Journal of Geodesy, 2008, 82:415-421 doi: 10.1007/s00190-007-0190-9
    [4]
    Xu P L, Liu J N, Shi C. Total Least-Squares Adjustment in Partial Errors-in-Variables Models:Algorithm and Statistical Analysis[J]. Journal of Geodesy, 2012, 86:661-675 doi: 10.1007/s00190-012-0552-9
    [5]
    Snow K. Topics in Total Least-Squares Adjustment within the Errors-in-Variables Model:Singular Cofactor Matrices and Prior Inforamtion[D]. Columbus:Ohio State University, 2012
    [6]
    Fang X. Weighted Total Least Squares Solutions for Applications in Geodesy[D]. German:Leibniz University, 2011
    [7]
    Schaffrin B, Lee I P, Felus Y, et al. Total Least-Squares for Geodetic Straight-Line and Plane Adjustment[J]. Boll. Geod. Sci. Aff., 2006, 65:141-168
    [8]
    Goulb G H, Lan L F C. An Analysis of the Total Least Squares Problem[J]. SIAM Journal on Numerical Analysis, 1980, 17(6):883-893 doi: 10.1137/0717073
    [9]
    Neitzel F. Generalization of Total Least-Squares on Example of Unweighted and Weighted 2D Similarity Transfromation[J]. Journal of Geodesy, 2010, 84:751-762 doi: 10.1007/s00190-010-0408-0
    [10]
    Shen Y Z, Li B F, Chen Y. An Iterative Solution of Weighted Total Least-Squares Adjustment[J]. Journal of Geodesy, 2011, 85:229-238 doi: 10.1007/s00190-010-0431-1
    [11]
    Mahboub V. On Weighted Total Least-Squares for Geodetic Transformations[J]. Journal of Geodesy, 2012, 86:359-367 doi: 10.1007/s00190-011-0524-5
    [12]
    Amiri-Simkooei A R, Jazaeri S. Weighted Total Least-Squares Formulated by Standard Least-Squares Theory[J]. Journal of Geodetic Science, 2012, 2:113-124
    [13]
    Fang X. Weighted Total Least-Squares:Necessary and Sufficient Conditions, Fixed and Random Parameters[J]. Journal of Geodesy, 2013, 87:733-749 doi: 10.1007/s00190-013-0643-2
    [14]
    曾文宪. 系数矩阵误差对EIV模型平差结果的影响研究[D]. 武汉: 武汉大学, 2013

    Zeng Wenxian. Effect of Random Design Matrix on Adjustment of EIV Model[D]. Wuhan:Wuhan University, 2013
    [15]
    Zeng W X, Liu J N, Yao Y B. On Partial Errors-in-Variables Models with Inequality Constraints of Parameters and Varables[J]. Journal of Geodesy, 1989:111-119 https://www.researchgate.net/publication/271273863_On_partial_errors-in-variables_models_with_inequality_constraints_of_parameters_and_variables
    [16]
    Xu P L, Liu J N. Variance Components in Errors-in-variables Models:Estimability, Stability and Bias Analysis[J]. Journal of Geodesy, 2014, 88:719-734 doi: 10.1007/s00190-014-0717-9
    [17]
    姚宜斌, 黄书华, 张良, 等.求解三维坐标转换参数的整体最小二乘新方法[J].武汉大学学报·信息科学版, 2015, 40(7):853-857 http://ch.whu.edu.cn/CN/abstract/abstract3288.shtml

    Yao Yibin, Huang Shuhua, Zhang Liang, et al. A New Method of TLS for Solving the Parameters of Three-Dimensional Coordinate Transformation[J]. Geomatics and Information Science of Wuhan University, 2015, 40(7):853-857 http://ch.whu.edu.cn/CN/abstract/abstract3288.shtml
  • Related Articles

    [1]LIU Huimin, WANG Zhenjie, SHAN Rui, LU Kai. Resilient Adaptive Filtering Based on Model Modification and Underwater Application[J]. Geomatics and Information Science of Wuhan University, 2023, 48(1): 146-154. DOI: 10.13203/j.whugis20200469
    [2]ZENG Anmin, ZHANG Qi, SUN Zhongmiao. A Fusion Model for ERP Considering Boundary Constraints and Inner Constraints[J]. Geomatics and Information Science of Wuhan University, 2019, 44(12): 1771-1777. DOI: 10.13203/j.whugis20180155
    [3]XIE Xuemei, SONG Yingchun, XIA Yuguo. An Active Set Algorithm of Conjugate Gradients for Adjustment Model with Interval Constraints[J]. Geomatics and Information Science of Wuhan University, 2019, 44(9): 1274-1281. DOI: 10.13203/j.whugis20170325
    [4]XIE Xuemei, SONG Yingchun, XIAO Zhaobing. A Fast Search Algorithm in Adjustment Model with Inequality Constraint[J]. Geomatics and Information Science of Wuhan University, 2018, 43(9): 1349-1354. DOI: 10.13203/j.whugis20160435
    [5]SHI Shouzheng, SHI Yishao, ZHAO Wei. Improvement of Area Calculation Method of Patch on Earth Ellipsoid[J]. Geomatics and Information Science of Wuhan University, 2018, 43(5): 779-785. DOI: 10.13203/j.whugis20160521
    [6]GAO Weiguang, YANG Yuanxi, ZHANG Shuangcheng. GPS/INS Adaptive Filtering Considering the Influences of Kinematic Model Errors[J]. Geomatics and Information Science of Wuhan University, 2008, 33(2): 191-194.
    [7]LI Shi'an, LIU Jingnan, SHI Chuang. Study of the Ellipsoid Transformation on the Establishment of Local Independence Coordinate System Using GPS Technique[J]. Geomatics and Information Science of Wuhan University, 2005, 30(10): 888-891.
    [8]BAI Jianjun, ZHAO Xuesheng, CHEN Jun. Digital Elevation Modeling Based on Hierarchical Subdivision of the Triangular Meshes on Ellipsoidal Surface[J]. Geomatics and Information Science of Wuhan University, 2005, 30(5): 383-387.
    [9]Huang Jinshui. Intrinsic Structure and Density of the Normal Ellipsoid's Interior[J]. Geomatics and Information Science of Wuhan University, 1997, 22(4): 350-354.
    [10]Xu Caijun, Liu Dajie. The Broad Relative Error Ellipsoid(Ellipse)[J]. Geomatics and Information Science of Wuhan University, 1990, 15(2): 19-27.
  • Cited by

    Periodical cited type(2)

    1. 牛全福,雷姣姣,刘博,王浩,张瑞珍,王刚. Sentinel-1/2影像在兰州北山削山造地范围识别中的应用. 自然资源遥感. 2025(01): 142-151 .
    2. 辛星. 建筑不同施工阶段扬尘污染浓度变化特征研究. 环境科学与管理. 2024(10): 76-80 .

    Other cited types(3)

Catalog

    Article views PDF downloads Cited by(5)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return