Citation: | ZHAO Jun, GUI Qingming, GUO Feixiao. A New Algorithm of Weighted Total Least Squares Estimate of Partial EIV Model Based on an Improved Objective Function[J]. Geomatics and Information Science of Wuhan University, 2017, 42(8): 1179-1184. DOI: 10.13203/j.whugis20150180 |
[1] |
王乐洋. 基于总体最小二乘的大地测量反演理论及应用研究[D]. 武汉: 武汉大学, 2011
Wang Leyang. Research on Theory and Application of Total Least Squares in Geodetic Inversion[D]. Wuhan:Wuhan University, 2011
|
[2] |
王乐洋, 许才军.总体最小二乘研究进展[J].武汉大学学报·信息科学版, 2013, 38(7):850-856 http://ch.whu.edu.cn/CN/abstract/abstract2703.shtml
Wang Leyang, Xu Caijun. Progress in Total Least Squares[J]. Geomatics and Inforamtion Science of Wuhan University, 2013, 38(7):850-856 http://ch.whu.edu.cn/CN/abstract/abstract2703.shtml
|
[3] |
Schaffrin B, Wieser A. On Weighted Total Least-Squares Adjustment for Linear Regression[J]. Journal of Geodesy, 2008, 82:415-421 doi: 10.1007/s00190-007-0190-9
|
[4] |
Xu P L, Liu J N, Shi C. Total Least-Squares Adjustment in Partial Errors-in-Variables Models:Algorithm and Statistical Analysis[J]. Journal of Geodesy, 2012, 86:661-675 doi: 10.1007/s00190-012-0552-9
|
[5] |
Snow K. Topics in Total Least-Squares Adjustment within the Errors-in-Variables Model:Singular Cofactor Matrices and Prior Inforamtion[D]. Columbus:Ohio State University, 2012
|
[6] |
Fang X. Weighted Total Least Squares Solutions for Applications in Geodesy[D]. German:Leibniz University, 2011
|
[7] |
Schaffrin B, Lee I P, Felus Y, et al. Total Least-Squares for Geodetic Straight-Line and Plane Adjustment[J]. Boll. Geod. Sci. Aff., 2006, 65:141-168
|
[8] |
Goulb G H, Lan L F C. An Analysis of the Total Least Squares Problem[J]. SIAM Journal on Numerical Analysis, 1980, 17(6):883-893 doi: 10.1137/0717073
|
[9] |
Neitzel F. Generalization of Total Least-Squares on Example of Unweighted and Weighted 2D Similarity Transfromation[J]. Journal of Geodesy, 2010, 84:751-762 doi: 10.1007/s00190-010-0408-0
|
[10] |
Shen Y Z, Li B F, Chen Y. An Iterative Solution of Weighted Total Least-Squares Adjustment[J]. Journal of Geodesy, 2011, 85:229-238 doi: 10.1007/s00190-010-0431-1
|
[11] |
Mahboub V. On Weighted Total Least-Squares for Geodetic Transformations[J]. Journal of Geodesy, 2012, 86:359-367 doi: 10.1007/s00190-011-0524-5
|
[12] |
Amiri-Simkooei A R, Jazaeri S. Weighted Total Least-Squares Formulated by Standard Least-Squares Theory[J]. Journal of Geodetic Science, 2012, 2:113-124
|
[13] |
Fang X. Weighted Total Least-Squares:Necessary and Sufficient Conditions, Fixed and Random Parameters[J]. Journal of Geodesy, 2013, 87:733-749 doi: 10.1007/s00190-013-0643-2
|
[14] |
曾文宪. 系数矩阵误差对EIV模型平差结果的影响研究[D]. 武汉: 武汉大学, 2013
Zeng Wenxian. Effect of Random Design Matrix on Adjustment of EIV Model[D]. Wuhan:Wuhan University, 2013
|
[15] |
Zeng W X, Liu J N, Yao Y B. On Partial Errors-in-Variables Models with Inequality Constraints of Parameters and Varables[J]. Journal of Geodesy, 1989:111-119 https://www.researchgate.net/publication/271273863_On_partial_errors-in-variables_models_with_inequality_constraints_of_parameters_and_variables
|
[16] |
Xu P L, Liu J N. Variance Components in Errors-in-variables Models:Estimability, Stability and Bias Analysis[J]. Journal of Geodesy, 2014, 88:719-734 doi: 10.1007/s00190-014-0717-9
|
[17] |
姚宜斌, 黄书华, 张良, 等.求解三维坐标转换参数的整体最小二乘新方法[J].武汉大学学报·信息科学版, 2015, 40(7):853-857 http://ch.whu.edu.cn/CN/abstract/abstract3288.shtml
Yao Yibin, Huang Shuhua, Zhang Liang, et al. A New Method of TLS for Solving the Parameters of Three-Dimensional Coordinate Transformation[J]. Geomatics and Information Science of Wuhan University, 2015, 40(7):853-857 http://ch.whu.edu.cn/CN/abstract/abstract3288.shtml
|
[1] | LIU Huimin, WANG Zhenjie, SHAN Rui, LU Kai. Resilient Adaptive Filtering Based on Model Modification and Underwater Application[J]. Geomatics and Information Science of Wuhan University, 2023, 48(1): 146-154. DOI: 10.13203/j.whugis20200469 |
[2] | ZENG Anmin, ZHANG Qi, SUN Zhongmiao. A Fusion Model for ERP Considering Boundary Constraints and Inner Constraints[J]. Geomatics and Information Science of Wuhan University, 2019, 44(12): 1771-1777. DOI: 10.13203/j.whugis20180155 |
[3] | XIE Xuemei, SONG Yingchun, XIA Yuguo. An Active Set Algorithm of Conjugate Gradients for Adjustment Model with Interval Constraints[J]. Geomatics and Information Science of Wuhan University, 2019, 44(9): 1274-1281. DOI: 10.13203/j.whugis20170325 |
[4] | XIE Xuemei, SONG Yingchun, XIAO Zhaobing. A Fast Search Algorithm in Adjustment Model with Inequality Constraint[J]. Geomatics and Information Science of Wuhan University, 2018, 43(9): 1349-1354. DOI: 10.13203/j.whugis20160435 |
[5] | SHI Shouzheng, SHI Yishao, ZHAO Wei. Improvement of Area Calculation Method of Patch on Earth Ellipsoid[J]. Geomatics and Information Science of Wuhan University, 2018, 43(5): 779-785. DOI: 10.13203/j.whugis20160521 |
[6] | GAO Weiguang, YANG Yuanxi, ZHANG Shuangcheng. GPS/INS Adaptive Filtering Considering the Influences of Kinematic Model Errors[J]. Geomatics and Information Science of Wuhan University, 2008, 33(2): 191-194. |
[7] | LI Shi'an, LIU Jingnan, SHI Chuang. Study of the Ellipsoid Transformation on the Establishment of Local Independence Coordinate System Using GPS Technique[J]. Geomatics and Information Science of Wuhan University, 2005, 30(10): 888-891. |
[8] | BAI Jianjun, ZHAO Xuesheng, CHEN Jun. Digital Elevation Modeling Based on Hierarchical Subdivision of the Triangular Meshes on Ellipsoidal Surface[J]. Geomatics and Information Science of Wuhan University, 2005, 30(5): 383-387. |
[9] | Huang Jinshui. Intrinsic Structure and Density of the Normal Ellipsoid's Interior[J]. Geomatics and Information Science of Wuhan University, 1997, 22(4): 350-354. |
[10] | Xu Caijun, Liu Dajie. The Broad Relative Error Ellipsoid(Ellipse)[J]. Geomatics and Information Science of Wuhan University, 1990, 15(2): 19-27. |
1. |
牛全福,雷姣姣,刘博,王浩,张瑞珍,王刚. Sentinel-1/2影像在兰州北山削山造地范围识别中的应用. 自然资源遥感. 2025(01): 142-151 .
![]() | |
2. |
辛星. 建筑不同施工阶段扬尘污染浓度变化特征研究. 环境科学与管理. 2024(10): 76-80 .
![]() |