XIE Xuemei, SONG Yingchun, XIAO Zhaobing. A Fast Search Algorithm in Adjustment Model with Inequality Constraint[J]. Geomatics and Information Science of Wuhan University, 2018, 43(9): 1349-1354. DOI: 10.13203/j.whugis20160435
Citation: XIE Xuemei, SONG Yingchun, XIAO Zhaobing. A Fast Search Algorithm in Adjustment Model with Inequality Constraint[J]. Geomatics and Information Science of Wuhan University, 2018, 43(9): 1349-1354. DOI: 10.13203/j.whugis20160435

A Fast Search Algorithm in Adjustment Model with Inequality Constraint

Funds: 

The National Natural Science Foundation of China 41574006

The National Natural Science Foundation of China 41674009

The National Natural Science Foundation of China 41674012

More Information
  • Author Bio:

    XIE Xuemei, PhD candidate, lecturer, specializes in surveying data processing. E-mail:xiexuemei_2003@126.com

  • Corresponding author:

    SONG Yingchun, PhD, professor. E-mail:csusyc@qq.com

  • Received Date: April 22, 2017
  • Published Date: September 04, 2018
  • There usually exists some prior information with inequality constraint in the survey of adjustment model. The uniqueness and stability of the solution can be guaranteed by making full use of it. However, the existing adjustment algorithms with inequality constrain, which are mainly based on optimization theory, are usually complex. They need to select the effective constraint or establish penalty function. This paper mainly studies the adjustment model with inequality constraint, in which the inequality constraint is considered as a feasible region on the basis of the least squares adjustment rule and the Fisher function is used to search the optimal solution that minimizes the sum of squared errors, and sufficient necessary conditions for the optimal feasible solution are derived. A non-precise fast search based on Wolfe-Powell algorithm is given in the feasible region, which reduces the computational complexity, a new adjustment algorithm with inequality constraint is presented. The given algorithm, in which the adjustment criterion is consistent with that of the least squares adjustment criteria, does not require matrix inversion operation, and can solve some of the large dimension adjustment problem with inequality constrain.
  • [1]
    舒梦珵, 王彦飞.储层重力密度反演后验约束正则化方法[J].地球物理学报, 2015, 58(6):2079-2086 http://kns.cnki.net/KCMS/detail/detail.aspx?filename=DQWX201506022&dbname=CJFD&dbcode=CJFQ

    Shu Mengcheng, Wang Yanfei. The Posterior Constrained Regularization Method for Reservoir Density Inversion[J]. Chinese Journal Geophysics, 2015, 58(6):2079-2086 http://kns.cnki.net/KCMS/detail/detail.aspx?filename=DQWX201506022&dbname=CJFD&dbcode=CJFQ
    [2]
    Wang Y F, Ma S Q, Yang H, et.al. On the Effective Inversion by Imposing a Priori Information for Retrieval of Land Surface Parameters[J]. Science in China D, 2009, 52(4):540-549 doi: 10.1007/s11430-009-0036-9
    [3]
    朱建军, 丁晓利, 陈永奇.集成地质、力学信息和监测数据的滑坡动态模型[J].测绘学报, 2003, 32(3):261-266 doi: 10.3321/j.issn:1001-1595.2003.03.015

    Zhu Jianjun, Ding Xiaoli, Chen Yongqi. Dynamic Landsliding Model with Integration of Monitoring Information and Mechanic Information[J]. Acta Geodaetica et Cartographica Sinica, 2003, 32(3):261-266 doi: 10.3321/j.issn:1001-1595.2003.03.015
    [4]
    左廷英, 宋迎春, 朱建军.带有先验约束信息边坡变形监测滤波算法[J].湖南大学学报(自然科学版), 2011, 38(2):18-22 http://d.old.wanfangdata.com.cn/Periodical/hndxxb201102004

    Zuo Tingying, Song Yingchun, Zhu Jianjun. Filter Algorithm for Slope Monitoring with Prior Constrained Information[J]. Journal of Hunan University (Natural Sciences), 2011, 38(2):18-22 http://d.old.wanfangdata.com.cn/Periodical/hndxxb201102004
    [5]
    张勤, 黄观文, 王利, 等.附有系统参数和附加约束条件的GPS城市沉降监测网数据处理方法研究[J].武汉大学学报·信息科学版, 2009, 34(3):269-272 http://ch.whu.edu.cn/CN/Y2009/V34/I3/269

    Zhang Qin, Huang Guanwen, Wang Li, et al. Datum Design Study of GPS Height Monitoring Network with Systematic Parameters and Constraints[J]. Geomatics and Information Science of Wuhan University, 2009, 34(3):269-272 http://ch.whu.edu.cn/CN/Y2009/V34/I3/269
    [6]
    Li Bofeng, Shen Yunzhong, Feng Yanming. Fast GNSS Ambiguity Resolution as an Ill-Posed Problem[J]. Journal of Geodesy, 2010, 84(11):683-698 doi: 10.1007/s00190-010-0403-5
    [7]
    王乐洋, 许才军, 汪建军.附有病态约束矩阵的等式约束反演问题研究[J].测绘学报, 2009, 38(5):397-401 doi: 10.3321/j.issn:1001-1595.2009.05.004

    Wang Leyang, Xu Caijun, Wang Jianjun. Research on Equality Constraint Inversion with Ill-Posed Constraint Matrix[J]. Acta Geodaetica et Cartographica Sinica, 2009, 38(5):397-401 doi: 10.3321/j.issn:1001-1595.2009.05.004
    [8]
    朱建军, 谢建.附不等式约束平差的一种简单迭代算法[J].测绘学报, 2011, 40(2):209-212 http://d.old.wanfangdata.com.cn/Periodical/chxb201102013

    Zhu Jianjun, Xie Jian. A Simple Iterative Algorithm for Inequality Constrained Adjustment[J]. Acta Geodaetica et Cartographica Sinica, 2011, 40(2):209-212 http://d.old.wanfangdata.com.cn/Periodical/chxb201102013
    [9]
    宋迎春, 左廷英, 朱建军.带有线性不等式约束平差模型的算法研究[J].测绘学报, 2008, 37(4):433-437 doi: 10.3321/j.issn:1001-1595.2008.04.006

    Song Yingchun, Zuo Tingying, Zhu Jianjun. Research on Algorithm of Adjustment Model with Linear Inequality Constrained Parameters[J]. Acta Geodaetica et Cartographica Sinica, 2008, 37(4):433-437 doi: 10.3321/j.issn:1001-1595.2008.04.006
    [10]
    彭军还, 张亚利, 章红平, 等.不等式约束最小二乘问题的解及其统计性质[J].测绘学报, 2007, 36(1):50-55 http://d.old.wanfangdata.com.cn/Periodical/chxb200701009

    Peng Junhuan, Zhang Yali, Zhang Hongping, et a1.The Solution of Inequality-Constrained Least Squares Problem and Its Statistical Properties[J]. Acta Geodaetica et Cartographica Sinica, 2007, 36(1):50-55 http://d.old.wanfangdata.com.cn/Periodical/chxb200701009
    [11]
    Peng J. An Aggregate Constraint Method for Inequality-Constrained Least Squares Problem[J].Journal of Geodesy, 2006, 79(12):705-713 doi: 10.1007/s00190-006-0026-z
    [12]
    冯光财, 朱建军, 陈正阳, 等.基于有效约束的附不等式约束平差的一种新算法[J].测绘学报, 2007, 36(2):120-123 http://d.old.wanfangdata.com.cn/Periodical/chxb200702001

    Feng Guangcai, Zhu Jianjun, Chen Zhengyang, et a1.A New Approach to Inequality Constrained Least-Squares Adjustment[J]. Acta Geodaetica et Cartogra phica Sinica, 2007, 36(2):120-123 http://d.old.wanfangdata.com.cn/Periodical/chxb200702001
    [13]
    Goldstein A A, Price J F. An Effective Algorithm for Minimization[J]. Numerische Mathematic, 1967, 10(2):184-189 http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_124b6c8b96541f8dfa12eaba2310f8dc
    [14]
    Wolfe P. Convergence Conditions for Ascent Methods[J]. SIAM Review, 1969, 11(2):226-235 doi: 10.1137/1011036
    [15]
    Wolfe P. Convergence Conditions for Ascent Methods Ⅱ[J]. SIAM Review, 1971, 13(2):185-188 doi: 10.1137/1013035
    [16]
    Powell M J D. On the Convergence of the Variable Metric Algorithm[J]. IMA Journal of Applied Mathematics, 1971, 7(1):21-36 doi: 10.1093/imamat/7.1.21
    [17]
    袁亚湘.非线性优化计算方法[M].北京:科学出版社, 2008

    Yuan Yaxiang. Nonlinear Optimization Computatio-nal Methods[M]. Beijing:The Science Publishing Company, 2008
  • Related Articles

    [1]WU Yuhao, CAO Xuefeng. Hilbert Code Index Method for Spatiotemporal Data of Virtual Battlefield Environment[J]. Geomatics and Information Science of Wuhan University, 2020, 45(9): 1403-1411. DOI: 10.13203/j.whugis20190394
    [2]ZHU Jie, ZHANG Hongjun. Battlefield Geographic Environment Spatiotemporal Process Model Based on Simulation Event[J]. Geomatics and Information Science of Wuhan University, 2020, 45(9): 1367-1377, 1437. DOI: 10.13203/j.whugis20200175
    [3]ZHU Jie, YOU Xiong, XIA Qing, ZHANG Hongjun. Battlefield Geographic Environment Data Organizational Process Modeling Based on OOPN[J]. Geomatics and Information Science of Wuhan University, 2020, 45(7): 1027-1034. DOI: 10.13203/j.whugis20180313
    [4]LI Zhaoxing, ZHAI Jingsheng, WU Fang. A Shape Similarity Assessment Method for Linear Feature Generalization[J]. Geomatics and Information Science of Wuhan University, 2019, 44(12): 1859-1864. DOI: 10.13203/j.whugis20180164
    [5]ZHU Jie, YOU Xiong, XIA Qing. Battlefield Environment Object Spatio-Temporal Data Organizing Model Based on Task-Process[J]. Geomatics and Information Science of Wuhan University, 2018, 43(11): 1739-1745. DOI: 10.13203/j.whugis20170074
    [6]LI Jian, ZHOU Qu, CHEN Xiaoling, TIAN Liqiao, LI Tingting. Spatial Scale Study on Quantitative Remote Sensing of Highly Dynamic Coastal/Inland Waters[J]. Geomatics and Information Science of Wuhan University, 2018, 43(6): 937-942. DOI: 10.13203/j.whugis20160174
    [7]XU Junkui, WU Fang, LIU Wenfu, JIN Pengfei. Settlement Incremental Updating Quality Evaluation Basedon Neighborhood Spatial Similarity[J]. Geomatics and Information Science of Wuhan University, 2014, 39(4): 476-480. DOI: 10.13203/j.whugis20120117
    [8]AN Xiaoya, SUN Qun, YU Bohu. Feature Matching from Network Data at Different Scales Based on Similarity Measure[J]. Geomatics and Information Science of Wuhan University, 2012, 37(2): 224-228.
    [9]LIU Pengcheng, LUO Jing, AI Tinghua, LI Chang. Evaluation Model for Similarity Based on Curve Generalization[J]. Geomatics and Information Science of Wuhan University, 2012, 37(1): 114-117.
    [10]Wang Qiao. Self-similarity Analysis of Cartographic Lines and the Automated Line Generalization[J]. Geomatics and Information Science of Wuhan University, 1995, 20(2): 123-128.
  • Cited by

    Periodical cited type(1)

    1. 李成名,武鹏达,印洁. 图数统一表达地理模型及自补偿方法. 测绘学报. 2017(10): 1688-1697 .

    Other cited types(4)

Catalog

    Article views (1586) PDF downloads (172) Cited by(5)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return