JIA Yonghong, XIE Zhiwei, LV Zhen, ZHU Menghua, LIU Meijuan. A New Change Detection Method of Remote Sensing Image[J]. Geomatics and Information Science of Wuhan University, 2016, 41(8): 1001-1006. DOI: 10.13203/j.whugis20150025
Citation: JIA Yonghong, XIE Zhiwei, LV Zhen, ZHU Menghua, LIU Meijuan. A New Change Detection Method of Remote Sensing Image[J]. Geomatics and Information Science of Wuhan University, 2016, 41(8): 1001-1006. DOI: 10.13203/j.whugis20150025

A New Change Detection Method of Remote Sensing Image

Funds: 

Civil Military Integration in the Field of Highway Transportation GFZX0404080102

Collaborative Project with Wuhan Institute of Surveying and Mapping 234323

More Information
  • Author Bio:

    JIA Yonghong , PhD, professor, specializes in remote sensing image processing and analysis. E-mail:yhjia2000@sina.com

  • Corresponding author:

    XIE Zhiwei, PhD. E-mail:zwxrs@whu.edu.cn

  • Received Date: April 04, 2016
  • Published Date: August 04, 2016
  • In this paper, an object-based change detection method for multi-temporal remote sensing images based on the Chi Square Transformation (CST) and sample selection is proposed to measure change in the large-size multi-temporal remotely sensed images used for monitoring national geographic conditions, In this new change detection method, image segmentation is used to obtain image objects. Secondly, multiple features are extracted from image objects, and a weighted difference is calculated for each image object based on CST. Then, with adaptively selected training samples a change threshold is automatically calculated using Expectation Maximization (EM) and a Bayesian rule with a minimum error rate. The weighted difference image is segmented into a binary image with a change threshold to derive change detection results. Multi-temporal high-resolution images of the Wuhan East Lake New Technology Development Zone were used for land cover change detection, experimental results show that the proposed method can obtain the most accurate change threshold among three tested methods. These highly accuracy change detection results effectively reduce the rate of lost detection, and are currently used for monitoring geographic conditions.
  • [1]
    李德仁, 眭海刚, 单杰.论地理国情监测的技术支撑[J].武汉大学学报·信息科学版, 2012, 37(5): 506-512 http://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201205002.htm

    Li Deren, Sui Haigang, Shan Jie. Discussion on Technologies of Geographic National Condition Monitoring[J]. Geomatics and Information Science of Wuhan University, 2012, 37(5): 506-512 http://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201205002.htm
    [2]
    王琰, 舒宁, 龚龑.利用马尔柯夫随机场图模型的变化像斑类别判定方法[J].武汉大学学报·信息科学版, 2012, 37(5): 542-545 http://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201205010.htm

    Wang Yan, Shu Ning, Gong Yan. Determination of New Class Properties of the Changed Image Segments Using MRF Graph Model[J]. Geomatics and Information Science of Wuhan University, 2012, 37(5): 542-545 http://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201205010.htm
    [3]
    佃袁勇, 方圣辉, 姚崇怀.一种面向地理对象的遥感影像变化检测方法[J].武汉大学学报·信息科学版, 2014, 39(8): 906-912 http://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201408005.htm

    Dian Yuanyong, Fang Shenghui, Yao Chonghuai. The Geographic Object-based Method for Change Detection with Remote Sensing Imagery[J]. Geomatics and Information Science of Wuhan University, 2014, 39(8): 906-912 http://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201408005.htm
    [4]
    Brozzone L, Prieto D F. Automatic Analysis of the Difference Image for Unsupervised Change Detection[J]. IEEE Transaction on Geoscience and Remote Sensing, 2000, 38 (3):1 171-1 182 doi: 10.1109/36.843009
    [5]
    Addabbo A D, Satalino G, Pasquariello G, et al. Three Different Unsupervised Methods for Change Detection: An Application[C]. Geoscience and Remote Sensing Symposium, Anchorage, 2004
    [6]
    Farid M, Gabriele M, Sebastiano B S. Unsupervised Change Detection Methods for Remote Sensing Images [J]. Optical Engineering, 2002, 41(12): 3 288-3 297 doi: 10.1117/1.1518995
    [7]
    杜培军, 柳思聪.融合多特征的遥感影像变化检测[J].遥感学报, 2012, 16(4):663-677 http://www.cnki.com.cn/Article/CJFDTOTAL-YGXB201204002.htm

    Du Peijun, Liu Sicong. Change Detection from Multi-temporal Remote Sensing Images by Integrating Multiple Features [J]. Journal of Remote Sensing, 2012, 16(4):663-677 http://www.cnki.com.cn/Article/CJFDTOTAL-YGXB201204002.htm
    [8]
    Bazi Y, Bruzzone L, Melgani F. Image Thresholding Based on the EM Algorithm and the Generalized Gaussian Distribution[J]. Pattern Recognition, 2007, 40(2):619-634 doi: 10.1016/j.patcog.2006.05.006
    [9]
    Haverkamp D, Tsatsoulis C. Information Fusion for Estimation of Summer MIZ Ice Concentration form SAR Imagery[J]. IEEE Trans Geoscience Remote Sensing, 1999, 37(3): 1 278-1 294 doi: 10.1109/36.763288
    [10]
    张谦, 贾永红, 吴晓良, 等.一种带几何约束的大幅面遥感影像自动快速配准方法[J].武汉大学学报·信息科学版, 2014, 39(1): 17-21 http://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201401004.htm

    Zhang Qian, Jia Yonghong, Wu Xiaoliang, et al. A Rapid Image Registration Method Based on Restricted Geometry Constrains for Large-size Remote Sensing Image[J]. Geomatics and Information Science of Wuhan University, 2014, 39(1):17-21 http://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201401004.htm
  • Related Articles

    [1]ZHANG Fan, CHAI Hongzhou, WANG Min, XIAO Guorui, ZHANG Qiankun, DU Zhenqiang. Undifferenced and Uncombined PPP Ambiguity Resolution Combined with GPS/GLONASS Triple-Frequency Observations[J]. Geomatics and Information Science of Wuhan University, 2024, 49(10): 1900-1910. DOI: 10.13203/j.whugis20220315
    [2]SONG Weiwei, SONG Qisheng, HE Qianqian, GONG Xiaopeng, GU Shengfeng. Analysis of PPP-B2b Positioning Performance Enhanced by High-Precision Ionospheric Products[J]. Geomatics and Information Science of Wuhan University, 2024, 49(9): 1517-1526. DOI: 10.13203/j.whugis20230030
    [3]SONG Weiwei, ZHAO Xinke, LOU Yidong, SUN Weibin, ZHAO Zhengyu. Performance Evaluation of BDS-3 PPP-B2b Service[J]. Geomatics and Information Science of Wuhan University, 2023, 48(3): 408-415. DOI: 10.13203/j.whugis20200686
    [4]YAN Zhongbao, ZHANG Xiaohong. Partial Ambiguity Resolution Method and Results Analysis for GNSS Uncombined PPP[J]. Geomatics and Information Science of Wuhan University, 2022, 47(6): 979-989. DOI: 10.13203/j.whugis20220025
    [5]GU Shengfeng, DAI Chunqi, HE Chengpeng, FANG Lizhe, WANG Zihao. Analysis of Semi-tightly Coupled Multi-GNSS PPP-RTK/VIO for Vehicle Navigation in Urban Areas[J]. Geomatics and Information Science of Wuhan University, 2021, 46(12): 1852-1861. DOI: 10.13203/j.whugis20210615
    [6]YAO Yibin, FENG Xinying, PENG Wenjie, LIU Lei. Local Atmosphere Augmentation Based on CORS for Real-Time PPP[J]. Geomatics and Information Science of Wuhan University, 2019, 44(12): 1739-1748. DOI: 10.13203/j.whugis20180131
    [7]SONG Chao, HAO Jinming. Instantaneous Re-convergence of Kinematic PPP by the Use of Relationship Between Multiple Receiver Ambiguity[J]. Geomatics and Information Science of Wuhan University, 2017, 42(5): 595-599, 690. DOI: 10.13203/j.whugis20140747
    [8]GUO Fei, ZHANG Xiaohong. Processing Capacity for GPS Data with Clock Slip Using Online PPP Services[J]. Geomatics and Information Science of Wuhan University, 2012, 37(11): 1333-1336.
    [9]TU Rui, HUANG Guanwen, ZHANG Qin, WANG Li. The Research of Dual Frequency Solution Method for Single Frequency Precise Point Positioning(PPP) Based on SEID Model[J]. Geomatics and Information Science of Wuhan University, 2011, 36(10): 1187-1190.
    [10]ZHAO Jianhu, WANG Shengping, ZHANG Hongmei, WEN Weidong. Long-Distance and On-the-Fly GPS Tidal Level Measurement Based on GPS PPK/PPP[J]. Geomatics and Information Science of Wuhan University, 2008, 33(9): 910-913.
  • Cited by

    Periodical cited type(13)

    1. 冯晓亮,陈欢,李厚芝. 不同观测环境中的多模GNSS数据质量自动化检测方法. 测绘工程. 2024(06): 56-61 .
    2. 刘嘉伟,孙保琪,韩蕊,张喆,王侃,袁海波,杨旭海. GNSS多系统RTK授时性能分析. 导航定位与授时. 2023(03): 49-58 .
    3. 王浩浩,郝明,庄文泉. GNSS实时卫星钟差估计在地震监测中的应用. 导航定位与授时. 2023(03): 108-116 .
    4. 周长江,余海锋,王林伟,雷云平,岳彩亚. 无频间钟偏差改正的BDS-2三频非组合PPP随机模型优化. 测绘通报. 2023(12): 164-168 .
    5. 潘丽静,刘翔,夏川茹,王雷雷. GNSS精密卫星钟差实时估计与分析. 城市勘测. 2021(06): 73-76 .
    6. 郭磊,王甫红,桑吉章,张万威. 一种新的利用历元间位置变化量约束的GNSS导航算法. 武汉大学学报(信息科学版). 2020(01): 21-27 .
    7. 陶钧,张柔. GPS/BeiDou/Galileo/GLONASS实时精密卫星钟差估计. 测绘地理信息. 2020(03): 102-106 .
    8. 黄观文,王浩浩,谢威,曹钰. GNSS实时卫星钟差估计技术进展. 导航定位与授时. 2020(05): 1-9 .
    9. 张浩,赵兴旺,陈佩文,谢毅. GPS/BDS卫星钟差融合解算模型及精度分析. 合肥工业大学学报(自然科学版). 2020(09): 1192-1196 .
    10. 叶珍,李浩军. GNSS卫星钟差估计与结果分析. 导航定位与授时. 2019(03): 88-94 .
    11. 盛剑锋,张彩红,谭凯. 一种全球导航卫星系统钟差估计优化方案的量化研究. 科学技术与工程. 2019(14): 14-21 .
    12. 王尔申,赵珩,曲萍萍,庞涛,孙军. 基于拉格朗日插值法的卫星导航空间信号精度评估算法. 沈阳航空航天大学学报. 2019(04): 43-48 .
    13. 李云,崔文刚. 精密单点定位技术发展及应用. 科学技术与工程. 2019(27): 1-11 .

    Other cited types(10)

Catalog

    Article views PDF downloads Cited by(23)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return