DUAN Zhugeng, ZHAO Dan, ZENG Yuan, ZHAO Yujin, WU Bingfang, ZHU Jianjun. Estimation of the Forest Aboveground Biomass at Regional Scale Based on Remote Sensing[J]. Geomatics and Information Science of Wuhan University, 2015, 40(10): 1400-1408. DOI: 10.13203/j.whugis20140709
Citation: DUAN Zhugeng, ZHAO Dan, ZENG Yuan, ZHAO Yujin, WU Bingfang, ZHU Jianjun. Estimation of the Forest Aboveground Biomass at Regional Scale Based on Remote Sensing[J]. Geomatics and Information Science of Wuhan University, 2015, 40(10): 1400-1408. DOI: 10.13203/j.whugis20140709

Estimation of the Forest Aboveground Biomass at Regional Scale Based on Remote Sensing

Funds: The National Natural Science Foundation of China, Nos. 41201351, 41401508; the Strategic Priority Research Program - Climate Change, No. XDA05050108; the Open Fund of State Key Laboratory of Remote Sensing Science, No. OFSLRSS201417.
More Information
  • Received Date: September 21, 2014
  • Published Date: October 04, 2015
  • Forested areas are the largest carbon pool in terrestrial ecosystems. Thus, a key link in terrestrial carbon pool research is estimating the forest biomass accurately. In this study, canopy height and density indices were calculated from LiDAR point cloud data. Statistical models between the biomass calculated from field data and LiDAR-derived variables were built. A stepwise regression was used for variable selection and the maximum coefficient of determination (R2). Techniques for improving variable selection were applied to select the LiDAR-derived variables to be included in the models. Lastly, the forest aboveground biomass as estimated by field data and LiDAR data, was regarded as sample data. The forest aboveground biomass calculated from LiDAR data, band reflectance and vegetation indices of Landsat8 OLI were used to establish the regression model for estimating the forest aboveground biomass at a regional scale. The result shows that: the correlation (R2) between the biomass estimated by LiDAR data and the biomass calculated from field inventory data was 0.81, and the RMSE of biomass is 40.85 t/ha, which means canopy height indices and density indices of airborne LiDAR point cloud data has a strong relationship with biomass. The biomass was estimated by airborne LiDAR data and Landsat8 OLI for coniferous forest, broad-leaved forest and coniferous and broadleaf mixed forest. The estimated correlation results showed that R2 was 0.51 (n=251), 0.58 (n=235) and 0.58 (n=241) respectively, and the RMSE for biomass was 24.1 t/ha, 31.3 t/ha and 29.9 t/ha respectively. The resulting estimated biomass for three different forest types is pretty much the same. On the whole, it is feasible and reliable to estimate forest aboveground biomass at regional scale based on remote sensing. The estimated biomass can provide useful data for the monitoring of forest ecosystem carbon fixation.
  • [1]
    Hou Yuanzhao, Wu Shuirong. Review on the Research of Valuation and Compensation for Forest Ecological Service[J]. World Forestry Research,2005, 18(3): 1-5(侯元兆,吴水容. 森林生态服务价值评价与补偿研究综述[J].世界林业研究,2005, 18(3): 1-5)
    [2]
    Bond-Lamberty B, Wang C, Gower S T. Aboveground and Below Ground Biomass and Sapwood Area Allometric Equations for Six Boreal Tree Species of Northern Manitoba[J]. Canadian Journal of Forest Research, 2002, 32(8): 1 441-1 450
    [3]
    Jiang Yanling, Zhou Guangsheng. Carbon Equilibrium in Larixgmelinii Forest and Impact of Global Change on It[J]. Chinese Journal of Applied Ecology, 2001, 12(4): 481-484(蒋延玲, 周广胜. 兴安落叶松林碳平衡和全球变化影响研究[J].应用生态学报,2001,12(4): 481-484)
    [4]
    Yang Qingpei, Li Mingguang, Wang Bosun, et al. Dynamics of Biomass and Net Primary Productivity in Succession of South Subtropical Forests in Southwest Guangdong[J]. Chinese Journal of Applied Ecology,2003, 14(12):2 136-2 140 (杨清培,李鸣光,王伯荪,等.粤西南亚热带森林演替过程中的生物量与净第一性生产力动态[J]. 应用生态学报,2003, 14(12):2 136-2 140)
    [5]
    Xing Yanqiu, Wang Lihai. Compatible Biomass Estimation Models of Natural Forests in Changbai Mountains Based on Forest Inventory[J]. Chinese Journal of Applied Ecology,2007, 18(1): 1- 8(邢艳秋,王立海.基于森林调查数据的长白山天然林森林生物量相容性模型[J].应用生态学报,2007, 18(1): 1- 8)
    [6]
    Gibbs H K, Brown S, Niles J O, et al. Monitoring and Estimating Tropical Forest Carbon Stocks: Making REDD a Reality[J]. Environmental Research Letters, 2007, 2(4):1-13
    [7]
    Feng Zongwei, Chen Chuying, Zhang Jiawu, et al. The Determination of Biomass of Pines Massoniana Stand in Huitong County, Hunan Province[J]. Scientia Silvae Sinicae, 1982, 18(2): 127-134(冯宗炜,陈楚莹,张家武,等.湖南会同地区马尾松林生物量的测定[J].林业科学,1982,18(2):127-134)
    [8]
    Foody G M, Cutler M E, Mcmorrow J, et al. Mapping the Biomass of Bornean Tropical Rain Forest from Remotely Sensed Data[J]. Global Ecology & Biogeography, 2001,10:379-387
    [9]
    Dong J R, Kaufmann R K, Myneni R B, et al. Remote Sensing Estimates of Boreal and Temperate Forest Woody Biomass: Carbon Pools, Sources, and Sinks[J]. Remote Sensing of Environment, 2003, 84(3): 393-410
    [10]
    Li Deren, Wang Changwei, Hu Yueming, et al. General Review on Remote Sensing-Based Biomass Estimation[J]. Geomatics and Information Science of Wuhan University, 2012, 37(6): 631-635(李德仁,王长委,胡月明,等. 遥感技术估算森林生物量的研究进展[J]. 武汉大学学报·信息科学版, 2012, 37(6): 631-635)
    [11]
    Nelson R F, Krabill W B, Maclean G A. Determining Forest Canopy Characteristics Using Airborne Laser Data[J]. Remote Sensing of Environment, 1984, 15(3): 201-212
    [12]
    Nelson R F, Oderwald R G, Gregoire T G. Separating the Ground and Airborne Laser Sampling Phases to Estimate Tropical Forest Basal Area, Volume, and Biomass[J]. Remote Sensing of Environment, 1997, 60(3):311-326
    [13]
    Lefsky M A, Cohn W B, Parker G G. et al. LiDAR Remote Sensing for Ecosystem Studies[J]. BioScience, 2002, 52(1): 19-30
    [14]
    Naesset E T, Gobakken T, Holgren J, et al. Laser Scanning of Forest Resources: the Nordic Experience[J]. Scandinavian Journal of Forest Research, 2004, 19 (6): 482-499
    [15]
    Popescu S C, Wynne R H, Nelson R F. Measuring Individual Tree Crown Diameter with LiDAR and Assessing Its Influence on Estimating Forest Volume and Biomass[J]. Canadian Journal of Remote Sensing, 2003, 29(5): 564-577
    [16]
    Nelson R, Valenti M A, Short A, et al. A Multiple Resource Inventory of Delaware Using Airborne Laser Data[J]. BioScience, 2003, 53(10):981-992
    [17]
    Wulder M A, Seemann D. Forest Inventory Height Update Through the Integration of LiDAR Data with Segmented Landsat Imagery[J]. Canadian Journal of Remote Sensing, 2003, 29(5): 536-543
    [18]
    Wang Minghua, Zhang Xiaohong, Zeng Tao, et al. Preprocessing Algorithms for Filtering Airborne LiDAR Data[J]. Geomatics and Information Science of Wuhan University, 2010, 35(2): 224-227(王明华,张小红,曾涛,等. 机载LiDAR数据滤波预处理方法研究[J]. 武汉大学学报·信息科学版, 2010, 35(2): 224-227)
    [19]
    Sui Lichun, Zhang Yibin, Zhang Shuo, et al. Filtering of Airborne LiDAR Point Cloud Data Based on Progressive TIN[J]. Geomatics and Information Science of Wuhan University, 2011, 36(10): 1 159-1 163(隋立春,张熠斌,张硕,等. 基于渐进三角网的机载LiDAR点云数据滤波[J]. 武汉大学学报·信息科学版, 2011, 36(10): 1 159-1 163)
    [20]
    Shen Jing, Liu Jiping, Lin Xiangguo. Airborne LiDAR Data Filtering by Morphological Reconstruction Method[J]. Geomatics and Information Science of Wuhan University, 2011, 36(2): 167-170(沈晶,刘纪平,林祥国. 用形态学重建方法进行机载LiDAR数据滤波[J]. 武汉大学学报·信息科学版, 2011, 36(2): 167-170)
    [21]
    Nilsson M. Estimation of Tree Heights and Stand Volume Using an Airborne LiDAR System[J]. Remote Sensing of Environment, 1996, 56: 1-7
    [22]
    Richter R, Schlpfer D. Atmospheric/Topographic Correction for Satellite Imagery[R].DLR-IB, 565-02/10,Wessling,Germany,2005
    [23]
    Richter R, Muller A. De-shadowing of Satellite/Airborne Imagery[J]. International Journal of Remote Sensing, 2005, 26(15): 3 137-3 148
    [24]
    Pearson R L, Miller L D. Remote Mapping of Standing Crop Biomass for Estimation of the Productivity of the Short-Grass Prairie[C]. The 8th International Symposium on Remote Sensing of Environment, Pawnee National Grasslands, Colorado, Ann Arbor, MI, USA, 1972
    [25]
    Rouse J W, Haas R H, Schell J A, et al. Monitoring Vegetation Systems in the Great Plains with ERTS[C]. The 3rd ERTS Symposium,NASA,Washington D C,USA, 1974
    [26]
    Major D J, Baret F, Guyot G. A Ratio Vegetation Index Adjusted for Soil Brightness[J].International Journal of Remote Sensing, 1990, 11(5): 727-740
    [27]
    Liu H Q, Huete A R. A Feedback Based Modification of the NDVI to Minimize Canopy Background and Atmospheric Noise[J]. IEEE Transactions on Geoscience and Remote Sensing, 1995, 33(2): 457-465
    [28]
    Dong T, Wu B. Estimate Faction of Photosynthetically Active Radiation with Three-band Vegetation Indices Based on HJ-CDD Satellite in Wheat[C]. 2012 First International Conference on Agro-Geoinformatics, Shanghai, China, 2012
    [29]
    Vincini M, Frazzi E. Comparing Narrow and Broad-Band Vegetation Indices to Estimate Leaf Chlorophyll Content in Planophile Crop Canopies[J]. Precision Agriculture, 2011, 12(3): 334-344
    [30]
    Wu B F, Zhang L, Yan C Z, et al. China Cover 2010: Methology and Features[C]. GeoInformatics, Hong Kong, China,2012
    [31]
    Ferster C J, Coops N C, Trofymow J A. Aboveground Large Tree Mass Estimation in a Coastal Forest in British Columbia Using Plot-level Metrics and Individual Tree Detection from LiDAR[J]. Canadian Journal of Remote Sensing, 2009,35(3):270-275
    [32]
    Lefsky M A, Cohen W B, Acker S A, et al. LiDAR Remote Sensing of the Canopy Structure and Biophysical Properties of Douglas-fir Western Hemlock Forests[J]. Remote Sensing of Environment, 1999, 70(3): 339-361
    [33]
    Naesset E. Predicting Forest Stand Characteristics with Airborne Scanning Laser Using a Practical Two-stage Procedure and Field Data[J]. Remote Sensing of Environment, 2002, 80(1):88-99
    [34]
    Pang Yong, Zhao Feng, Li Zengyuan, et al. Forest Height Inversion Using Airborne LiDAR Technology[J]. Journal of Remote Sensing, 2008,12(1):152-158 (庞勇, 赵峰, 李增元,等.机载激光雷达平均树高提取研究[J].遥感学报,2008,12(1):152-158)
    [35]
    Næsset E, Gobakken T. Estimation of Above-and Below-ground Biomass Across Regions of the Boreal Forest Zone Using Airborne Laser[J]. Remote Sensing of Environment, 2008, 112(6): 3 079-3 090
    [36]
    Hame T, Salli A, Andersson K, et al. A New Methodology for the Estimation of Biomass of Conifer-dominated Boreal Forests Using NOAA AVHRR Data[J]. International Journal of Remote Sensing, 1997, 18(15): 3 211-3 243
    [37]
    Hame T. Landsat-aided Forest Site Type Mapping[J]. Photogrammetric Engineering and Remote Sensing, 1984, 50(8): 1 175-1 183
    [38]
    Guo Zhihua, Peng Shaolin, Wang Bosun. Eestimating Forest Biomass in Western Guangdong Using Landsat TM Data[J].Acta Ecollogical Sinica, 2002, 22(11): 1 832-1 839(郭志华,彭少麟,王伯荪.利用TM数据提取粤西地区的森林生物量[J]. 生态学报,2002,22(11): 1 832-1 839)
  • Related Articles

    [1]LONG En, LÜ Shouye, QU Xiaofei, MENG Gang, LAI Guangling, YANG Yuke. Height Inversion Model of Oil Tank Using Satellite Imagery with Same Name Arc Distance[J]. Geomatics and Information Science of Wuhan University, 2024, 49(3): 411-418. DOI: 10.13203/j.whugis20210239
    [2]LÜ Pinji, LI Zhengyuan, SUN Lingli, LIN Jun, TANG Lei, NI Yipeng. Analysis of Impact of the Tonga Volcanic Eruption in 2022 on the Strain Observation of Chinese Mainland[J]. Geomatics and Information Science of Wuhan University, 2022, 47(6): 927-933. DOI: 10.13203/j.whugis20220174
    [3]LEI Xiangxu, SANG Jizhang, LI Zhenwei, CHEN Junyu, DU Jianli, HE Donglei. Association of Very-Short-Arc Angles Data for LEO Space Objects[J]. Geomatics and Information Science of Wuhan University, 2020, 45(10): 1526-1532. DOI: 10.13203/j.whugis20180386
    [4]LOU Yidong, YAO Xiuguang, LIU Yang, ZHENG Fu. Impact of Ambiguity Resolution and Arc Length on Regional Precise Orbit Determination[J]. Geomatics and Information Science of Wuhan University, 2016, 41(2): 249-254. DOI: 10.13203/j.whugis20140201
    [5]LIU Xiaoxia, JIANG Zaisen, WU Yanqiang. The Applicability of Kriging Interpolation Method in GPSVelocity Gridding and Strain Calculating[J]. Geomatics and Information Science of Wuhan University, 2014, 39(4): 457-461. DOI: 10.13203/j.whugis20120086
    [6]WU Yanqiang, JIANG Zaisen, YANG Guohua, FANG Ying. Application and Method of GPS Strain Calculating in Whole Mode Using Multi-Surface Function[J]. Geomatics and Information Science of Wuhan University, 2009, 34(9): 1085-1089.
    [7]DING Kaihua, XU Cajjun. Current Crustal Strain Field in the Sichuan-Yunnan Area by Joint Inversion of GPS and Seismic Moment Tensor[J]. Geomatics and Information Science of Wuhan University, 2009, 34(3): 265-268.
    [8]ZHU Xinhui, SUN Fuping, QIN Yong. Establishment of Plate Motion Model by the Integrated Data of GPS and VLBI[J]. Geomatics and Information Science of Wuhan University, 2005, 30(7): 604-608.
    [9]DU Ruilin, QIAO Xuejun, YANG Shaomin, WANG Qi. Results of the Crustal Deformation by GPS Survey and Horizontal Strain Rate Fields in the Three Gorges Area[J]. Geomatics and Information Science of Wuhan University, 2004, 29(9): 768-771.
    [10]Zhang Zuxun, Bao Xiuzhi, Cao Hui. Arc Spline and Arclet Processing[J]. Geomatics and Information Science of Wuhan University, 1994, 19(3): 189-193.
  • Cited by

    Periodical cited type(5)

    1. 黄少华,万永革,冯淦,李枭,关兆萱. 2022年9月17日中国台湾地震序列的触发机制及其动力学成因. 地质力学学报. 2023(05): 674-684 .
    2. 李之诺,卢佳遇,高锐,陈致同. 斜向聚合及弧后伸展作用对台湾北部-琉球地区的构造影响——砂箱模型实验的启示. 地球学报. 2022(05): 609-615 .
    3. 李建涛,刚慧龙. 基于ITRF14框架的URCORS坐标分析. 工程勘察. 2022(10): 62-66 .
    4. 高源,瞿伟,张勤,王庆良,郝明. GNSS揭示的汾渭盆地及周缘现今地壳运动与应变差异. 武汉大学学报(信息科学版). 2021(07): 1063-1070+1113 .
    5. 徐良叶,邵德盛,吴学群,牛甜. 最小二乘配置的云南区域形变与应变特征研究. 测绘科学. 2021(12): 16-23+74 .

    Other cited types(4)

Catalog

    Article views (1848) PDF downloads (610) Cited by(9)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return