Citation: | WANG Leyang, YU Hang. Total Least Squares Joint Adjustment[J]. Geomatics and Information Science of Wuhan University, 2016, 41(12): 1683-1689. DOI: 10.13203/j.whugis20140670 |
[1] |
Schaffrin B, Wieser A. On Weighted Total Least Squares Adjustment for Linear Regression[J]. Journal of Geodesy, 2008, 82(7):415-421 doi: 10.1007/s00190-007-0190-9
|
[2] |
王乐洋, 许才军, 温扬茂. 利用STLN和InSAR数据反演2008年青海大柴旦Mw 6.3级地震断层参数[J]. 测绘学报, 2013, 42(2):168-176
Wang Leyang, Xu Caijun, Wen Yangmao. Fault Parameters of 2008 Qinghai Dacaidan Mw 6.3 Earthquake from STLN Inversion and InSAR Data[J]. Acta Geodaetica et Cartographica Sinica, 2013, 42(2):168-176
|
[3] |
Mahboub V. On Weighted Total Least Squares for Geodetic Transformation[J]. Journal of Geodesy, 2012, 86(5):359-367 doi: 10.1007/s00190-011-0524-5
|
[4] |
王乐洋. 基于总体最小二乘的大地测量反演理论及应用研究[D]. 武汉:武汉大学, 2011 http://cn.bing.com/academic/profile?id=2614154453&encoded=0&v=paper_preview&mkt=zh-cn
Wang Leyang. Research on Theory and Application of Total Least Squares in Geodetic Inversion[D]. Wuhan:Wuhan University, 2011 http://cn.bing.com/academic/profile?id=2614154453&encoded=0&v=paper_preview&mkt=zh-cn
|
[5] |
Amiri-Simkooei A, Jazaeri S. Weighted Total Least Squares Formulated by Standard Least Squares Theory[J]. Journal of Geodetic Science,2012,2:113-124 http://cn.bing.com/academic/profile?id=2032082196&encoded=0&v=paper_preview&mkt=zh-cn
|
[6] |
王乐洋,许才军.附有相对权比的总体最小二乘平差[J].武汉大学学报·信息科学版, 2011,36(8):887-894 http://ch.whu.edu.cn/CN/abstract/abstract629.shtml
Wang Leyang, Xu Caijun. Total Least Square Adjustment with Weight Scaling Factor[J]. Geomatics and Information Science of Wuhan University,2011,36(8):887-894 http://ch.whu.edu.cn/CN/abstract/abstract629.shtml
|
[7] |
李爽,许才军,王新洲.论述多种数据联合反演的模式及算法[J].大地测量与地球动力学,2002,22(3):78-82 http://www.cnki.com.cn/Article/CJFDTOTAL-DKXB200203020.htm
Li Shuang, Xu Caijun, Wang Xinzhou. Models and Algorithms of Joint Inversion with Verious Kind of Data[J].Journal of Geodesy and Geodynamics,2002,22(3):78-82 http://www.cnki.com.cn/Article/CJFDTOTAL-DKXB200203020.htm
|
[8] |
Xu Caijun, Ding Kaihua, Cai Jiangqiang, et al. Methods of Determining Weight Scaling Factors for Geodetic-geophysical Joint Inversion[J]. Journal of Geodynamics, 2009,47(1):39-46 doi: 10.1016/j.jog.2008.06.005
|
[9] |
高士纯.附有限制条件的间接分组平差模型与公式[J]. 武汉测绘科技大学学报, 1996,21(1):36-40 http://www.cnki.com.cn/Article/CJFDTOTAL-WHCH601.006.htm
Gao Shichun. A Model and the Formulae for Successive Adjustment with Restrictive Conditions[J]. Journal of Wuhan Technical University of Surveying and Mapping, 1996,21(1):36-40 http://www.cnki.com.cn/Article/CJFDTOTAL-WHCH601.006.htm
|
[10] |
曾安敏,张丽萍. 多种序贯平差方法的比较[J]. 大地测量与地球动力学, 2007,27(2):84-88 http://www.cnki.com.cn/Article/CJFDTOTAL-DKXB200702015.htm
Zeng Anmin, Zhang Liping. Comparison Among Several Sequential Adjustment Methods[J]. Journal of Geodesy and Geodynamics, 2007,27(2):84-88 http://www.cnki.com.cn/Article/CJFDTOTAL-DKXB200702015.htm
|
[11] |
隋立芬,刘雁雨,王威.自适应序贯平差及其应用[J].武汉大学学报·信息科学版, 2007,32(1):51-54 http://ch.whu.edu.cn/CN/abstract/abstract1797.shtml
Sui Lifen, Liu Yanyu, Wang Wei. Adaptive Sequential Adjustment and Its Application[J]. Geomatics and Information Science of Wuhan University,2007,32(1):51-54 http://ch.whu.edu.cn/CN/abstract/abstract1797.shtml
|
[12] |
张丽萍. 多因子自适应序贯平差[J].测绘科学,2008,33(1):71-74 http://www.cnki.com.cn/Article/CJFDTOTAL-CHKD200801024.htm
Zhang Liping. Adaptive Sequential Adjustment with Multi-adaptive Factors[J]. Science of Surveying and Mapping, 2008,33(1):71-74 http://www.cnki.com.cn/Article/CJFDTOTAL-CHKD200801024.htm
|
[13] |
夏敬潮,孙茂军,何书镜,等. 基于等价观测理论的序贯平差模型[J]. 测绘地理信息, 2013,38(4):31-32 http://www.cnki.com.cn/Article/CJFDTOTAL-CHXG201304011.htm
Xia Jingchao, Sun Maojun, He Shujing, et al. Sequential Least Squares Model Based on the Theory of Equivalent Observation[J]. Journal of Geomatics, 2013,38(4):31-32 http://www.cnki.com.cn/Article/CJFDTOTAL-CHXG201304011.htm
|
[14] |
王乐洋,许才军,张朝玉.一种确定联合反演中相对权比的两步法[J].测绘学报,2012, 41(1):19-24 http://www.cnki.com.cn/Article/CJFDTOTAL-CHXG201304011.htm
Wang Leyang, Xu Caijun, Zhang Chaoyu. A Two-step Method to Determine Relative Weight Ratio Factors in Joint Inversion[J]. Acta Geodaetica et Cartographica Sinica,2012,41(1):19-24 http://www.cnki.com.cn/Article/CJFDTOTAL-CHXG201304011.htm
|
[15] |
张朝玉,许才军. 具有自适应权比的大地测量联合反演序贯算法及其应用[J]. 武汉大学学报·信息科学版, 2012,37(10):1140-1145 http://ch.whu.edu.cn/CN/abstract/abstract353.shtml
Zhang Chaoyu, Xu Caijun. Sequential Algorithm of Geodesy Joint Inversion with Auto-match Weight Ratio and Its Application[J]. Geomatics and Information Science of Wuhan University, 2012,37(10):1140-1145 http://ch.whu.edu.cn/CN/abstract/abstract353.shtml
|
[16] |
曾安敏, 杨元喜,欧阳桂崇. 附加约束条件的序贯平差[J].武汉大学学报·信息科学版,2008,33(2):183-186 http://ch.whu.edu.cn/CN/abstract/abstract1551.shtml
Zeng Anmin,Yang Yuanxi,Ouyang Guichong. Sequential Adjustment with Constraints Among Parameters[J]. Geomatics and Information Science of Wuhan University,2008,33(2):183-186 http://ch.whu.edu.cn/CN/abstract/abstract1551.shtml
|
[17] |
王乐洋,许才军.等式约束反演与联合反演的对比研究[J].大地测量与地球动力学, 2009, 29(1):74-78 http://www.cnki.com.cn/Article/CJFDTOTAL-DKXB200901015.htm
Wang Leyang, Xu Caijun. Comparative Research on Equality Constraint Inversion and Joint Inversion[J]. Journal of Geodesy and Geodynamics, 2009, 29(1):74-78 http://www.cnki.com.cn/Article/CJFDTOTAL-DKXB200901015.htm
|
[18] |
Amiri-Simkooei A R. Application of Least Squares Variance Component Estimation to Errors-in-Variables Models[J]. Journal of Geodesy, 2013,87(10-12):935-944 doi: 10.1007/s00190-013-0658-8
|
[19] |
Xu Peiliang,Liu Jingnan.Variance Components in Errors-in-Variables Models:Estimability, Stability and Bias Analysis[J].Journal of Geodesy, 2014,88(8):719-734 doi: 10.1007/s00190-014-0717-9
|
[20] |
Mahboub V. Variance Component Estimation in Errors-in-Variables Models and a Rigorous Total Least-Squares Approach[J].Studia Geophysica et Geodaetica, 2014, 58(1):17-40 doi: 10.1007/s11200-013-1150-x
|
[21] |
陶本藻. 自由网平差与变形分析[M]. 武汉:武汉测绘科技大学出版社,2000
Tao Benzao. Adjustment of Free Network and Deformation Analysis[M]. Wuhan:Wuhan Technology University of Surveying and Mapping Press, 2000
|
[22] |
王乐洋, 于冬冬. 病态总体最小二乘问题的虚拟观测解法[J]. 测绘学报, 2014, 43(6):575-581 http://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201406006.htm
Wang Leyang, Yu Dongdong. Virtual Observation Method to Ill-posed Total Least Squares Problem[J]. Acta Geodaetica et Cartographica Sinica,2014,43(6):575-581 http://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201406006.htm
|
[1] | WANG Leyang, YU Hang. Weighted Total Least Squares Method for Joint Adjustment Model with Weight Scaling Factor[J]. Geomatics and Information Science of Wuhan University, 2019, 44(8): 1233-1240. DOI: 10.13203/j.whugis20170265 |
[2] | LI Linlin, ZHOU Yongjun, ZHOU Yu. A Weighted Total Least Squares Adjustment Method for Building Regularization[J]. Geomatics and Information Science of Wuhan University, 2019, 44(3): 422-428. DOI: 10.13203/j.whugis20160510 |
[3] | LIU Chunyang, WANG Jian, WANG Bin, LIU Chao, LIU Jiping. Robust Weight Total Least Squares Algorithm of Correlated Observation Based on Median Parameter Method[J]. Geomatics and Information Science of Wuhan University, 2019, 44(3): 378-384. DOI: 10.13203/j.whugis20160516 |
[4] | XIE Jian, LONG Sichun, LI Li, LI Bochao. An Aggregate Function Method for Weighted Total Least Squares with Inequality Constraints[J]. Geomatics and Information Science of Wuhan University, 2018, 43(10): 1526-1530. DOI: 10.13203/j.whugis20160507 |
[5] | WANG Leyang, YU Hang. Application of Total Least Squares Joint Adjustment to Volcano Inversion of Mogi Model[J]. Geomatics and Information Science of Wuhan University, 2018, 43(9): 1333-1341. DOI: 10.13203/j.whugis20160469 |
[6] | WANG Leyang, XU Guangyu, CHEN Xiaoyong. Total Least Squares Adjustment of Partial Errors-in-Variables Model with Weight Scaling Factor[J]. Geomatics and Information Science of Wuhan University, 2017, 42(6): 857-863. DOI: 10.13203/j.whugis20150001 |
[7] | WANG Leyang, XU Guangyu. Application of Posteriori Estimation of a Stochastic Model on the Weighted Total Least Squares Problem[J]. Geomatics and Information Science of Wuhan University, 2016, 41(2): 255-261. DOI: 10.13203/j.whugis20140275 |
[8] | WANG Leyang, XU Caijun. Total Least Squares Adjustment with Weight Scaling Factor[J]. Geomatics and Information Science of Wuhan University, 2011, 36(8): 887-890. |
[9] | WANG Leyang, XU Caijun, LU Tieding. Ridge Estimation Method in Ill-posed Weighted Total Least Squares Adjustment[J]. Geomatics and Information Science of Wuhan University, 2010, 35(11): 1346-1350. |
[10] | Wang Renxiang. Effects of Parameters of Weight Function for Blunder Detection by the Recursive Weighted Least Squares Method[J]. Geomatics and Information Science of Wuhan University, 1988, 13(4): 42-50. |