WANG Leyang, YU Hang. Total Least Squares Joint Adjustment[J]. Geomatics and Information Science of Wuhan University, 2016, 41(12): 1683-1689. DOI: 10.13203/j.whugis20140670
Citation: WANG Leyang, YU Hang. Total Least Squares Joint Adjustment[J]. Geomatics and Information Science of Wuhan University, 2016, 41(12): 1683-1689. DOI: 10.13203/j.whugis20140670

Total Least Squares Joint Adjustment

Funds: The National Natural Science Foundation of China, Nos. 41204003,41664001; Science and Technology Project of the Education Department of Jiangxi Province, Nos. GJJ150595,KJLD12077,KJLD14049; Key Laboratory of Watershed Ecology and Geographical Environment Monitoring, NASG, No. WE2015005; Key Laboratory of Mapping from Space, NASG, No. K201502; National Department Public Benefit Research Foundation (Surveying,Mapping and Geoinformation), No. 201512026; Scientific Research Foundation of ECIT, No. DHBK201113; Support Program for Outstanding Youth Talents in Jiangxi Province; National Key Research and Development Program,No.2016YFB0501405; Innovation Fund Designated for Graduate Students of ECIT, No. DHYC-2015005.
More Information
  • Author Bio:

    WANG Leyang , PhD, associate professor, specializes in geodetic inversion and geodetic data processing. .E-mail:wleyang@163.com

  • Received Date: February 03, 2016
  • Published Date: December 04, 2016
  • The Total Least Squares (TLS) method is applied to joint adjustment. An algorithm for total least squares joint adjustment with a weight scaling factor is derived. The weight scaling factor is the key to deal with joint adjustment, and methods for determining the weight scaling factor are discussed. The difference norm between the estimated and true values is used to evaluate the TLS joint adjustment simulation. The influence of different noises on the weight scaling factor is also analyzed for two simulated examples. The results show that the estimated values is related to the weight scaling factor. When priori information is accurate, the prior unit weight variance method performs the best, and when priori information is inaccurate, the minimum discriminate function method and as its discriminate function can achieve effective results.
  • [1]
    Schaffrin B, Wieser A. On Weighted Total Least Squares Adjustment for Linear Regression[J]. Journal of Geodesy, 2008, 82(7):415-421 doi: 10.1007/s00190-007-0190-9
    [2]
    王乐洋, 许才军, 温扬茂. 利用STLN和InSAR数据反演2008年青海大柴旦Mw 6.3级地震断层参数[J]. 测绘学报, 2013, 42(2):168-176

    Wang Leyang, Xu Caijun, Wen Yangmao. Fault Parameters of 2008 Qinghai Dacaidan Mw 6.3 Earthquake from STLN Inversion and InSAR Data[J]. Acta Geodaetica et Cartographica Sinica, 2013, 42(2):168-176
    [3]
    Mahboub V. On Weighted Total Least Squares for Geodetic Transformation[J]. Journal of Geodesy, 2012, 86(5):359-367 doi: 10.1007/s00190-011-0524-5
    [4]
    王乐洋. 基于总体最小二乘的大地测量反演理论及应用研究[D]. 武汉:武汉大学, 2011 http://cn.bing.com/academic/profile?id=2614154453&encoded=0&v=paper_preview&mkt=zh-cn

    Wang Leyang. Research on Theory and Application of Total Least Squares in Geodetic Inversion[D]. Wuhan:Wuhan University, 2011 http://cn.bing.com/academic/profile?id=2614154453&encoded=0&v=paper_preview&mkt=zh-cn
    [5]
    Amiri-Simkooei A, Jazaeri S. Weighted Total Least Squares Formulated by Standard Least Squares Theory[J]. Journal of Geodetic Science,2012,2:113-124 http://cn.bing.com/academic/profile?id=2032082196&encoded=0&v=paper_preview&mkt=zh-cn
    [6]
    王乐洋,许才军.附有相对权比的总体最小二乘平差[J].武汉大学学报·信息科学版, 2011,36(8):887-894 http://ch.whu.edu.cn/CN/abstract/abstract629.shtml

    Wang Leyang, Xu Caijun. Total Least Square Adjustment with Weight Scaling Factor[J]. Geomatics and Information Science of Wuhan University,2011,36(8):887-894 http://ch.whu.edu.cn/CN/abstract/abstract629.shtml
    [7]
    李爽,许才军,王新洲.论述多种数据联合反演的模式及算法[J].大地测量与地球动力学,2002,22(3):78-82 http://www.cnki.com.cn/Article/CJFDTOTAL-DKXB200203020.htm

    Li Shuang, Xu Caijun, Wang Xinzhou. Models and Algorithms of Joint Inversion with Verious Kind of Data[J].Journal of Geodesy and Geodynamics,2002,22(3):78-82 http://www.cnki.com.cn/Article/CJFDTOTAL-DKXB200203020.htm
    [8]
    Xu Caijun, Ding Kaihua, Cai Jiangqiang, et al. Methods of Determining Weight Scaling Factors for Geodetic-geophysical Joint Inversion[J]. Journal of Geodynamics, 2009,47(1):39-46 doi: 10.1016/j.jog.2008.06.005
    [9]
    高士纯.附有限制条件的间接分组平差模型与公式[J]. 武汉测绘科技大学学报, 1996,21(1):36-40 http://www.cnki.com.cn/Article/CJFDTOTAL-WHCH601.006.htm

    Gao Shichun. A Model and the Formulae for Successive Adjustment with Restrictive Conditions[J]. Journal of Wuhan Technical University of Surveying and Mapping, 1996,21(1):36-40 http://www.cnki.com.cn/Article/CJFDTOTAL-WHCH601.006.htm
    [10]
    曾安敏,张丽萍. 多种序贯平差方法的比较[J]. 大地测量与地球动力学, 2007,27(2):84-88 http://www.cnki.com.cn/Article/CJFDTOTAL-DKXB200702015.htm

    Zeng Anmin, Zhang Liping. Comparison Among Several Sequential Adjustment Methods[J]. Journal of Geodesy and Geodynamics, 2007,27(2):84-88 http://www.cnki.com.cn/Article/CJFDTOTAL-DKXB200702015.htm
    [11]
    隋立芬,刘雁雨,王威.自适应序贯平差及其应用[J].武汉大学学报·信息科学版, 2007,32(1):51-54 http://ch.whu.edu.cn/CN/abstract/abstract1797.shtml

    Sui Lifen, Liu Yanyu, Wang Wei. Adaptive Sequential Adjustment and Its Application[J]. Geomatics and Information Science of Wuhan University,2007,32(1):51-54 http://ch.whu.edu.cn/CN/abstract/abstract1797.shtml
    [12]
    张丽萍. 多因子自适应序贯平差[J].测绘科学,2008,33(1):71-74 http://www.cnki.com.cn/Article/CJFDTOTAL-CHKD200801024.htm

    Zhang Liping. Adaptive Sequential Adjustment with Multi-adaptive Factors[J]. Science of Surveying and Mapping, 2008,33(1):71-74 http://www.cnki.com.cn/Article/CJFDTOTAL-CHKD200801024.htm
    [13]
    夏敬潮,孙茂军,何书镜,等. 基于等价观测理论的序贯平差模型[J]. 测绘地理信息, 2013,38(4):31-32 http://www.cnki.com.cn/Article/CJFDTOTAL-CHXG201304011.htm

    Xia Jingchao, Sun Maojun, He Shujing, et al. Sequential Least Squares Model Based on the Theory of Equivalent Observation[J]. Journal of Geomatics, 2013,38(4):31-32 http://www.cnki.com.cn/Article/CJFDTOTAL-CHXG201304011.htm
    [14]
    王乐洋,许才军,张朝玉.一种确定联合反演中相对权比的两步法[J].测绘学报,2012, 41(1):19-24 http://www.cnki.com.cn/Article/CJFDTOTAL-CHXG201304011.htm

    Wang Leyang, Xu Caijun, Zhang Chaoyu. A Two-step Method to Determine Relative Weight Ratio Factors in Joint Inversion[J]. Acta Geodaetica et Cartographica Sinica,2012,41(1):19-24 http://www.cnki.com.cn/Article/CJFDTOTAL-CHXG201304011.htm
    [15]
    张朝玉,许才军. 具有自适应权比的大地测量联合反演序贯算法及其应用[J]. 武汉大学学报·信息科学版, 2012,37(10):1140-1145 http://ch.whu.edu.cn/CN/abstract/abstract353.shtml

    Zhang Chaoyu, Xu Caijun. Sequential Algorithm of Geodesy Joint Inversion with Auto-match Weight Ratio and Its Application[J]. Geomatics and Information Science of Wuhan University, 2012,37(10):1140-1145 http://ch.whu.edu.cn/CN/abstract/abstract353.shtml
    [16]
    曾安敏, 杨元喜,欧阳桂崇. 附加约束条件的序贯平差[J].武汉大学学报·信息科学版,2008,33(2):183-186 http://ch.whu.edu.cn/CN/abstract/abstract1551.shtml

    Zeng Anmin,Yang Yuanxi,Ouyang Guichong. Sequential Adjustment with Constraints Among Parameters[J]. Geomatics and Information Science of Wuhan University,2008,33(2):183-186 http://ch.whu.edu.cn/CN/abstract/abstract1551.shtml
    [17]
    王乐洋,许才军.等式约束反演与联合反演的对比研究[J].大地测量与地球动力学, 2009, 29(1):74-78 http://www.cnki.com.cn/Article/CJFDTOTAL-DKXB200901015.htm

    Wang Leyang, Xu Caijun. Comparative Research on Equality Constraint Inversion and Joint Inversion[J]. Journal of Geodesy and Geodynamics, 2009, 29(1):74-78 http://www.cnki.com.cn/Article/CJFDTOTAL-DKXB200901015.htm
    [18]
    Amiri-Simkooei A R. Application of Least Squares Variance Component Estimation to Errors-in-Variables Models[J]. Journal of Geodesy, 2013,87(10-12):935-944 doi: 10.1007/s00190-013-0658-8
    [19]
    Xu Peiliang,Liu Jingnan.Variance Components in Errors-in-Variables Models:Estimability, Stability and Bias Analysis[J].Journal of Geodesy, 2014,88(8):719-734 doi: 10.1007/s00190-014-0717-9
    [20]
    Mahboub V. Variance Component Estimation in Errors-in-Variables Models and a Rigorous Total Least-Squares Approach[J].Studia Geophysica et Geodaetica, 2014, 58(1):17-40 doi: 10.1007/s11200-013-1150-x
    [21]
    陶本藻. 自由网平差与变形分析[M]. 武汉:武汉测绘科技大学出版社,2000

    Tao Benzao. Adjustment of Free Network and Deformation Analysis[M]. Wuhan:Wuhan Technology University of Surveying and Mapping Press, 2000
    [22]
    王乐洋, 于冬冬. 病态总体最小二乘问题的虚拟观测解法[J]. 测绘学报, 2014, 43(6):575-581 http://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201406006.htm

    Wang Leyang, Yu Dongdong. Virtual Observation Method to Ill-posed Total Least Squares Problem[J]. Acta Geodaetica et Cartographica Sinica,2014,43(6):575-581 http://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201406006.htm
  • Related Articles

    [1]WANG Leyang, YU Hang. Weighted Total Least Squares Method for Joint Adjustment Model with Weight Scaling Factor[J]. Geomatics and Information Science of Wuhan University, 2019, 44(8): 1233-1240. DOI: 10.13203/j.whugis20170265
    [2]LI Linlin, ZHOU Yongjun, ZHOU Yu. A Weighted Total Least Squares Adjustment Method for Building Regularization[J]. Geomatics and Information Science of Wuhan University, 2019, 44(3): 422-428. DOI: 10.13203/j.whugis20160510
    [3]LIU Chunyang, WANG Jian, WANG Bin, LIU Chao, LIU Jiping. Robust Weight Total Least Squares Algorithm of Correlated Observation Based on Median Parameter Method[J]. Geomatics and Information Science of Wuhan University, 2019, 44(3): 378-384. DOI: 10.13203/j.whugis20160516
    [4]XIE Jian, LONG Sichun, LI Li, LI Bochao. An Aggregate Function Method for Weighted Total Least Squares with Inequality Constraints[J]. Geomatics and Information Science of Wuhan University, 2018, 43(10): 1526-1530. DOI: 10.13203/j.whugis20160507
    [5]WANG Leyang, YU Hang. Application of Total Least Squares Joint Adjustment to Volcano Inversion of Mogi Model[J]. Geomatics and Information Science of Wuhan University, 2018, 43(9): 1333-1341. DOI: 10.13203/j.whugis20160469
    [6]WANG Leyang, XU Guangyu, CHEN Xiaoyong. Total Least Squares Adjustment of Partial Errors-in-Variables Model with Weight Scaling Factor[J]. Geomatics and Information Science of Wuhan University, 2017, 42(6): 857-863. DOI: 10.13203/j.whugis20150001
    [7]WANG Leyang, XU Guangyu. Application of Posteriori Estimation of a Stochastic Model on the Weighted Total Least Squares Problem[J]. Geomatics and Information Science of Wuhan University, 2016, 41(2): 255-261. DOI: 10.13203/j.whugis20140275
    [8]WANG Leyang, XU Caijun. Total Least Squares Adjustment with Weight Scaling Factor[J]. Geomatics and Information Science of Wuhan University, 2011, 36(8): 887-890.
    [9]WANG Leyang, XU Caijun, LU Tieding. Ridge Estimation Method in Ill-posed Weighted Total Least Squares Adjustment[J]. Geomatics and Information Science of Wuhan University, 2010, 35(11): 1346-1350.
    [10]Wang Renxiang. Effects of Parameters of Weight Function for Blunder Detection by the Recursive Weighted Least Squares Method[J]. Geomatics and Information Science of Wuhan University, 1988, 13(4): 42-50.
  • Cited by

    Periodical cited type(7)

    1. 陈丽,王岩,邵德盛. 病态加权最小二乘混合模型的k-Liu估计解法. 统计与决策. 2024(08): 17-21 .
    2. 史浩伟,俞克豪,李丽华,李淑慧,杨红磊,罗士淇. 顾及坐标精度的地球自转参数联合解算方法研究. 测绘科学. 2024(03): 1-7 .
    3. 郭春喜,郭鑫伟,聂建亮,王斌,刘晓云,王海涛. 利用GNSS水准成果融合构建中国大陆垂直运动模型. 武汉大学学报(信息科学版). 2023(04): 579-586 .
    4. 宋迎春,宋采薇,左廷英. 带有界不确定性的加权混合估计方法. 武汉大学学报(信息科学版). 2020(07): 949-955 .
    5. 王乐洋,余航. 附有相对权比的加权总体最小二乘联合平差方法. 武汉大学学报(信息科学版). 2019(08): 1233-1240 .
    6. 吴光明,鲁铁定. 病态总体最小二乘靶向奇异值修正法. 大地测量与地球动力学. 2019(08): 856-862 .
    7. 王乐洋,余航. 火山Mogi模型反演的总体最小二乘联合平差方法. 武汉大学学报(信息科学版). 2018(09): 1333-1341 .

    Other cited types(6)

Catalog

    Article views (2156) PDF downloads (394) Cited by(13)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return