ZHANG Qiang, ZHAO Qile, ZHANG Hongping, CHEN Guo. BDS Differential Code Bias Estimation Using BeiDou Experimental Tracking Stations[J]. Geomatics and Information Science of Wuhan University, 2016, 41(12): 1649-1655. DOI: 10.13203/j.whugis20140640
Citation: ZHANG Qiang, ZHAO Qile, ZHANG Hongping, CHEN Guo. BDS Differential Code Bias Estimation Using BeiDou Experimental Tracking Stations[J]. Geomatics and Information Science of Wuhan University, 2016, 41(12): 1649-1655. DOI: 10.13203/j.whugis20140640

BDS Differential Code Bias Estimation Using BeiDou Experimental Tracking Stations

Funds: 

The National High Technology Reasearch and Development Program of China(863 Program) 2014AA121501

the Fundamental Research Funds for the Central Universities 2014618020202

More Information
  • Author Bio:

    ZHANG Qiang, PhD candidate, specializes in GNSS ionosphere and precise point positioning.E-mail:zhangqiang@whu.edu.cn

  • Corresponding author:

    ZHAO Qile, PhD, professor.E-mail:zhaoql@whu.edu.cn

  • Received Date: May 21, 2016
  • Published Date: December 04, 2016
  • Differential Code Biases (DCBs) are the main systematic error in ionosphere TEC monitoring and modeling. Meanwhile, satellite DCBs are important parameters for satellite navigation messaging. This article presents a satellite DCBs estimation algorithm and DCBs transformation formula derived under different zero-mean conditions as applied to the constellation average of the satellite DCBs. Using BeiDou Experimental Tracking Station (BETS) observations from 2013, the DCBs for BDS satellite were determined, and the BDS satellite DCBs monthly stability was analyzed and compared with the DCBs products published by MGEX under the same zero-mean conditions. Results show that the BDS satellite B1-B2 DCBs values are between-9~17 ns, and the stability was better than 0.4 ns. Stability for BDS IGSO satellites was better than GEO and MEO satellites. The BDS satellite DCBs determined using BETS and MGEX have system biases, where the largest discrepancy was about 1.7 ns. The probable reason lies in a discrepancy in the pseudo range code measurement. The difference of receiver material results in a discrepancy in receiver DCBs.
  • [1]
    Schaer S, Steigenberger P. Overview of GNSS Biases[C]. IGS Workshop, Berne, 2012
    [2]
    Ge M, Gendt G, Rothacher M, et al. Resolution of GPS Carrier-phase Ambiguities in Precise Point Positioning (PPP) with Daily Observations[J]. Journal of Geodesy, 2008, 82(7):389-399 doi: 10.1007/s00190-007-0187-4
    [3]
    Coco D, Clayton C,Scott R, et al. Variability of GPS Satellite Differential Group Delay Biases[J]. Aerospace and Electronic Systems, IEEE Transactions on, 1991, 27(6):931-938 doi: 10.1109/7.104264
    [4]
    Sardón E, Rius A, Zarraoa N. Estimation of the Transmitter and Receiver Differential Biases and the Ionospheric Total Electron Content from Global Positioning System Observations[J]. Radio Science, 1994, 29(3):577-586 doi: 10.1029/94RS00449
    [5]
    袁运斌, 欧吉坤. GPS观测数据中的仪器偏差对确定电离层延迟的影响及处理方法[J].测绘学报, 1999, 28(2):110-114 http://www.cnki.com.cn/Article/CJFDTOTAL-CHXB902.002.htm

    Yuan Yunbin, Ou Jikun. The Effects of Instrumental Bias in GPS Observations on Determining Ionospheric Delays and the Methods of Its Calibration[J]. Acta Geodaetica et Cartographica Sinica, 1999, 28(2):110-114 http://www.cnki.com.cn/Article/CJFDTOTAL-CHXB902.002.htm
    [6]
    常青, 张东和, 肖佐, 等. GPS系统硬件延迟修正方法[J]. 科学通报, 2000, 45(15):1676-1680 http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200015019.htm

    Chang Qing, Zhang Donghe, Xiao Zuo, et al. A Method for Estimating GPS Instrumental Biases[J]. Chin Sci Bull, 2000, 45(15):1676-1680 http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200015019.htm
    [7]
    Wilson B, Yinger C, Feess W, et al. New and Improved the Broadcast Interfrequency Biases[OL]. http://trs-new.jpl.nasa.gov,2015
    [8]
    Ray J, Senior K. Geodetic Techniques for Time and Frequency Comparisons Using GPS Phase and Code Measurements[J]. Metrologia, 2005, 42(4):215-232 doi: 10.1088/0026-1394/42/4/005
    [9]
    戴伟, 焦文海, 贾小林. Compass导航卫星频间偏差参数使用方法[J].测绘科学技术学报, 2009, 26(5):367-369,374 http://www.cnki.com.cn/Article/CJFDTOTAL-JFJC200905016.htm

    Dai Wei, Jiao Wenhai, Jia Xiaolin. Application Research for Compass Navigation Satellite Interfrequency Bias Correction Terms[J]. Journal of Geomatics Science and Technology, 2009, 26(5):367-369,374 http://www.cnki.com.cn/Article/CJFDTOTAL-JFJC200905016.htm
    [10]
    吴晓莉, 平劲松, 刘利, 等. 区域卫星导航系统硬件延迟解算[J].武汉大学学报·信息科学版, 2011, 36(10):1218-1221

    Wu Xiaoli, Ping Jinsong, Liu Li, et al. Hardware Delay Solution of Regional Satellite Navigation System[J]. Geomatics and Information Science of Wuhan University, 2011, 36(10):1218-1221
    [11]
    Li Z S, Yuan Y B, Li H, et al. Two-step Method for the Determination of the Differential Code Biases of COMPASS Satellites[J].Journal of Geodesy, 2012, 86(11):1059-1076 doi: 10.1007/s00190-012-0565-4
    [12]
    樊家琛, 吴晓莉, 李宇翔, 等. 基于三频数据的北斗卫星导航系统DCB参数精度评估方法[J]. 中国空间科学技术, 2013, 33(4):62-70

    Fan Jiachen, Wu Xiaoli, Li Yuxiang, et al. COMPASS Satellites DCB Parameter Accuracy Assessment Based on Tri-frequency Data[J]. Chinese Space Sience and Technology, 2013, 33(4):62-70
    [13]
    Li Z S, Yuan Y B, Fan L, et al. Determination of the Differential Code Bias for Current BDS Satellites[J].IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(7):3968-3979 doi: 10.1109/TGRS.2013.2278545
    [14]
    舒宝, 刘晖, 张明, 等. 北斗系统硬件延迟解算及精度分析[J]. 武汉大学学报·信息科学版, 2016, 41(2):279-284 http://ch.whu.edu.cn/CN/abstract/abstract3468.shtml

    Shu Bao, Liu Hui, Zhang Ming, et al. Evaluation and Analysis of BDS Instrumental Biases[J]. Geomatics and Information Science of Wuhan University, 2016, 41(2):279-284 http://ch.whu.edu.cn/CN/abstract/abstract3468.shtml
    [15]
    Shi C, Zhao Q L, Li M, et al. Precise Orbit Determination of Beidou Satellites with Precise Positioning[J].Science China(Earth Sciences), 2012, 55(7):1079-1086 doi: 10.1007/s11430-012-4446-8
    [16]
    Montenbruck O, Rizos C, Weber R, et al. Getting a Grip on Multi-GNSS:the International GNSS Service MGEX Campaign[J]. GPS World, 2013,24(7):44-49 http://cn.bing.com/academic/profile?id=201719198&encoded=0&v=paper_preview&mkt=zh-cn
    [17]
    Montenbruck O, Hauschild A, Steigenberger P. Differential Code Bias Estimation Using Multi-GNSS Observations and Global Ionosphere Maps[C]. ION International Technical Meeting, San Diego, USA, 2014 http://cn.bing.com/academic/profile?id=1917116705&encoded=0&v=paper_preview&mkt=zh-cn
    [18]
    Schaer S. Mapping and Predicting the Earth's Ionosphere Using the Global Positioning System[D].Berne:University of Berne, 1999
  • Related Articles

    [1]HU Cancheng, WANG Changcheng, SHEN Peng. A New Landslide Deformation Monitoring Method with Polarimetric SAR Based on Polarimetric Likelihood Ratio Test[J]. Geomatics and Information Science of Wuhan University, 2023, 48(12): 1943-1950. DOI: 10.13203/j.whugis20200281
    [2]CHANG Yonglei, YANG Jie, LI Pingxiang, ZHAO Lingli, YU Jie. Automatic Bridge Recognition Method in High Resolution PolSAR Images Based on CFAR Detector[J]. Geomatics and Information Science of Wuhan University, 2017, 42(6): 762-767. DOI: 10.13203/j.whugis20140828
    [3]LI Lan, CHEN Erxue, LI Zengyuan, FENG Qi, ZHAO Lei. K-Wishart Classifier for PolSAR Data and Its Performance Evaluation[J]. Geomatics and Information Science of Wuhan University, 2016, 41(11): 1498-1504. DOI: 10.13203/j.whugis20140649
    [4]CHEN Jianhong, ZHAO Yongjun, LAI Tao, LIU Wei, HUANG Jie. Fast Non-local Means Filtering of SLC Fully PolSAR Image[J]. Geomatics and Information Science of Wuhan University, 2016, 41(5): 629-634. DOI: 10.13203/j.whugis20140089
    [5]XIA Guisong, XUE Nan, WANG Zifeng, ZHANG Liangpei. Anisotropic Diffusion on Complex Tensor Fields for PolSAR Image Filtering[J]. Geomatics and Information Science of Wuhan University, 2015, 40(11): 1533-1538,1556. DOI: 10.13203/j.whugis20140630
    [6]HUANG Xiaodong, LIU Xiuguo, CHEN Qihao, CHEN Qi. An Integrated Multi\|characteristics Buildings Segmentation Model of PolSAR Images[J]. Geomatics and Information Science of Wuhan University, 2013, 38(4): 450-454.
    [7]YU Jie, LIU Limin, LI Xiaojuan, ZHAO Zheng. Applications of ICA for Filtering of Fully Polarimetric SAR Imagery[J]. Geomatics and Information Science of Wuhan University, 2013, 38(2): 212-216.
    [8]YANG Jie, ZHAO Lingli, LI Pingxiang, LANG Fengkai. Preserving Polarimetric Scattering Characteristics Classification by Introducing Normalized Circular-pol Correlation Coefficient[J]. Geomatics and Information Science of Wuhan University, 2012, 37(8): 911-914.
    [9]DENG Shaoping, LI Pingxiang, ZHANG Jixian, HUANG Guoman. Filtering of Polarimetric SAR Imagery Based on Multiplicative Model[J]. Geomatics and Information Science of Wuhan University, 2011, 36(10): 1168-1171.
    [10]YANG Jie, LANG Fengkai, LI Deren. An Unsupervised Wishart Classification for Fully Polarimetric SAR Image Based on Cloude-Pottier Decomposition and Polarimetric Whitening Filter[J]. Geomatics and Information Science of Wuhan University, 2011, 36(1): 104-107.

Catalog

    Article views (2001) PDF downloads (446) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return