WANG Yu, LI Yu, ZHAO Quanhua. SAR Image Segmentation Combined Regular Tessellation and M-H Algorithm[J]. Geomatics and Information Science of Wuhan University, 2016, 41(11): 1491-1497. DOI: 10.13203/j.whugis20140536
Citation: WANG Yu, LI Yu, ZHAO Quanhua. SAR Image Segmentation Combined Regular Tessellation and M-H Algorithm[J]. Geomatics and Information Science of Wuhan University, 2016, 41(11): 1491-1497. DOI: 10.13203/j.whugis20140536

SAR Image Segmentation Combined Regular Tessellation and M-H Algorithm

Funds: 

The National Natural Science Foundation of China 41301479

The National Natural Science Foundation of China 41271435

More Information
  • Author Bio:

    WANG Yu, PhD candidate, specializes in image processing. E-mail:1009059221@qq.com

  • Corresponding author:

    LI Yu, PhD, professor. E-mail:lntuliyu@163.com

  • Received Date: September 06, 2015
  • Published Date: November 04, 2016
  • This paper presents a SAR image segmentation method that combines regular tessellation and the Metropolis-Hastings (M-H) algorithm. First the image domain is partitioned into a group of rectangular sub-blocks by regular tessellation and then the image is modeled on the assumption that intensities of its pixels in each homogeneous region follow an identical and independent Gamma distribution. A region-based SAR image segmentation model is built using the Bayesian paradigm. Then, an M-H scheme is used to simulate the segmentation model, which can segment SAR image and estimate the model parameters. In the M-H algorithm, three move types are designated, including updating parameter vector, updating label field, and splitting or merging sub-block. The results obtained from both real and simulated SAR images show that the proposed algorithm works effectively and efficiently.
  • [1]
    尹奎英, 刘宏伟, 金林. 快速的Otsu双阈值SAR图像分割法[J]. 吉林大学学报(工学版), 2011, 41(6):1761-1765 http://www.cnki.com.cn/Article/CJFDTOTAL-JLGY201106047.htm

    Yin Kuiying, Liu Hongwei, Jin Lin. Fast SAR Image Segmentation Method Based on Otsu Adaptive Double Threshold[J]. Journal of Jilin University (Engineering and Technology Edition), 2011, 41(6):1761-1765 http://www.cnki.com.cn/Article/CJFDTOTAL-JLGY201106047.htm
    [2]
    杨露菁, 王德石, 李煜. 利用非线性各向异性扩散和EM的SAR图像分割技术[J]. 武汉大学学报·信息科学版, 2009, 34(7):805-808 http://ch.whu.edu.cn/CN/Y2009/V34/I7/805

    Yang Lujing, Wang Deshi, Li Yu. A SAR Image Segmentation Method with Automatic EM and Nonlinear Anisotropic Diffusion[J]. Geomatics and Information Science of Wuhan University, 2009, 34(7):805-808 http://ch.whu.edu.cn/CN/Y2009/V34/I7/805
    [3]
    曹永峰, 孙洪, 杨文, 等. 基于MPM准则的无监督SAR图像分割[J]. 武汉大学学报·信息科学版, 2004, 29(9):812-815 http://ch.whu.edu.cn/CN/abstract/abstract4530.shtml

    Cao Yongfeng, Sun Hong, Yang Wen, et al. MPM-based Unsupervised Segmentation Method for SAR Images[J]. Geomatics and Information Science of Wuhan University, 2004, 29(9):812-815 http://ch.whu.edu.cn/CN/abstract/abstract4530.shtml
    [4]
    Dryden I L, Scarr M R, Taylor C C. Bayesian Texture Segmentation of Weed and Crop Images Using Reversible Jump Markov Chain Monte Carlo Methods[J]. Journal of the Royal Statistical Society:Series C, 2003, 52(1):31-50 doi: 10.1111/rssc.2003.52.issue-1
    [5]
    Askari G, Xu A G, Li Y U, et al. Automatic Determination of Number of Homogenous Regions in SAR Images Utilizing Splitting and Merging Based on a Reversible Jump MCMC Algorithm[J]. Journal of the Indian Society of Remote Sensing, 2013, 41(3):509-521 doi: 10.1007/s12524-013-0269-0
    [6]
    Li Yu, Li J, Chapman M A. Segmentation of SAR Intensity Imagery with a Voronoi Tessellation, Bayesian Inference, and Reversible Jump MCMC Algorithm[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(4):1872-1881 doi: 10.1109/TGRS.2009.2033588
    [7]
    Lucarini V. Symmetry-break in Voronoi Tessellations[J]. Symmetry, 2009, 1(1):21-54 doi: 10.3390/sym1010021
    [8]
    Schneider R. Weighted Faces of Poisson Hyperplane Tessellations[J]. Advances in Applied Probability, 2009, 41(3):682-694 doi: 10.1017/S0001867800003529
    [9]
    Schneider R. Vertex Numbers of Weighted Faces in Poisson Hyperplane Mosaics Weighted Faces[J]. Discrete and Computational Geometry, 2010, 44(1):1-8 doi: 10.1007/s00454-009-9148-4
    [10]
    Besag J. On the Statistical Analysis of Dirty Picture (with Discussion)[J]. Journal of the Royal Statistical Society(Series B (Methodological)), 1986, 48(3):259-302
    [11]
    Strauss D J. A Model for Clustering[J]. Biometrika, 1975, 62(2):467-475 doi: 10.1093/biomet/62.2.467
    [12]
    Lee J S, Hoppel K W, Mango S A, et al. Intensity and Phase Statistics of Multilook Polarimetricand Intenferometric SAR Imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 1994, 32(5):1017-1028 doi: 10.1109/36.312890
    [13]
    Green P J. Reversible Jump Markov Chain Monte Carlo Computation and Bayesian Model Determination[J]. Biometrika, 1995, 82(4):711-732 doi: 10.1093/biomet/82.4.711
    [14]
    Yong Y, Hong S, Chu H. Supervised SAR Image MPM Segmentation Based on Region-Based Hierarchical Model[J]. IEEE Geoscience and Remote Sensing Letters, 2006, 3(4):517-521 doi: 10.1109/LGRS.2006.879105
    [15]
    Congaltonr G, Green K. Assessing the Accuracy of Remotely Sensed Data:Principles and Practices[M]. Boca Raton:CRC Press, 2008:169-190
  • Related Articles

    [1]WANG Yong, REN Dong, LIU Yanping, LI Jiangbo. Spring PM2.5 Concentration Model in Hebei Province Based on GNSS PWV, Wind Speed and Air Pollution Observation[J]. Geomatics and Information Science of Wuhan University, 2019, 44(8): 1198-1204. DOI: 10.13203/j.whugis20170340
    [2]WU Kai, SHU Hong, NIE Lei, JIAO Zhenhang. An Approach to Estimating Spatially Correlated Error Covariance of Remote Sensing Retrieved Soil Moisture[J]. Geomatics and Information Science of Wuhan University, 2019, 44(5): 751-757. DOI: 10.13203/j.whugis20170133
    [3]LI Shuang, ZHAI Liang, SANG Huiyong, ZHOU Bin, FANG Xin, ZHEN Yunpeng. An Improved LUR-based Spatial Distribution Simulation for the Large Area PM2.5 Concentration[J]. Geomatics and Information Science of Wuhan University, 2018, 43(10): 1574-1579, 1587. DOI: 10.13203/j.whugis20170042
    [4]WANG Yong, LIU Yanping, LI Jiangbo, LIU Lintao. The Correlation Between the Variation of PM2.5/PM10 and Precipitable Water Vapor Based on GPS and Radiosonde[J]. Geomatics and Information Science of Wuhan University, 2016, 41(12): 1626-1631. DOI: 10.13203/j.whugis20140628
    [5]CHENG Changxiu, HU Xiatian, SONG Xiaomei, CHEN Chi. Selectivity Estimation Based on Cumulative Annular Bucket Histogram in Spatial Database[J]. Geomatics and Information Science of Wuhan University, 2016, 41(9): 1183-1191. DOI: 10.13203/j.whugis20140627
    [6]JIAO Limin, XU Gang, ZHAO Suli, MA Ming, DONG Ting, LI Jiangyue. LUR-based Simulation of the Spatial Distribution of PM2.5of Wuhan[J]. Geomatics and Information Science of Wuhan University, 2015, 40(8): 1088-1094. DOI: 10.13203/j.whugis20130785
    [7]LI Deren, WANG Changwei, HU Yueming, LIU Shuguang. General Review on Remote Sensing-Based Biomass Estimation[J]. Geomatics and Information Science of Wuhan University, 2012, 37(6): 631-635.
    [8]YAN Xun, CHEN Rongguo, CHENG Changxiu, SONG Xiaomei. Optimizer Cost Estimation Framework and Implementation for Spatially-Enabled Database[J]. Geomatics and Information Science of Wuhan University, 2011, 36(6): 726-730.
    [9]CHENG Changxiu, CHEN Rongguo, ZHU Yanlu. Spatial Selectivity Estimation of Window Query[J]. Geomatics and Information Science of Wuhan University, 2010, 35(4): 399-402.
    [10]RUAN Zhimin, SUN Zhenbing. Spatial Information Publication Based on Oracle Spatial and SVG[J]. Geomatics and Information Science of Wuhan University, 2004, 29(2): 161-164.

Catalog

    Article views (1364) PDF downloads (283) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return