GUO Li, LI Jinling, TONG Fengxian, WANG Guangli, HUANG Fei, LIU Qinghui, ZHENG Xin, ZHENG Weimin. Precisely Relative Positioning of Chang'E 3 Rover with SBI Delta VLBI Delay Measurements[J]. Geomatics and Information Science of Wuhan University, 2016, 41(8): 1125-1130. DOI: 10.13203/j.whugis20140439
Citation: GUO Li, LI Jinling, TONG Fengxian, WANG Guangli, HUANG Fei, LIU Qinghui, ZHENG Xin, ZHENG Weimin. Precisely Relative Positioning of Chang'E 3 Rover with SBI Delta VLBI Delay Measurements[J]. Geomatics and Information Science of Wuhan University, 2016, 41(8): 1125-1130. DOI: 10.13203/j.whugis20140439

Precisely Relative Positioning of Chang'E 3 Rover with SBI Delta VLBI Delay Measurements

Funds: 

The National Natural Science Foundation of China 11178024

The National Natural Science Foundation of China 11373060

The National Natural Science Foundation of China 11373061

The National Natural Science Foundation of China U1331205

The National Natural Science Foundation of China U1431117

Chinese Lunar Project Chang'E 3

the Natronal High Technology Research and Development Program of China (863 Program) 2012AA121603

the Program of Shanghai Science and Technology Committee 06DZ22101

the Project of Shanghai Outstanding Academic Leaders 14XD1404300

More Information
  • Received Date: March 20, 2016
  • Published Date: August 04, 2016
  • Based on Chinese VLBI Network, the Chang'E 3 lander and rover are traced with the same beam interferometry (SBI) method. The SBI delta group delay and phase delay measurements are obtained respectively from the digital signal and telemetry signals of the onboard detectors. The two detectors are close to each other in the flat region of Mare Imbrium on the moon. We present the kinematically combined or statistical relative positioning of the rover with respect to the lander in two dimensions with lunar height constrained to the lander. Relative position accuracy was better than 100m with SBI delta group observations, while the accuracy reached 1m with SBI delta phase delay measurements. Our positioning method will play an important role in relative positioning during the course of separation and locking of spacecrafts in the future Phase III of Chinese lunar project and other future deep space projects.
  • [1]
    欧阳自远, 我国月球探测的总体科学目标与发展战略[J].地球科学进展, 2004, 19(3): 355-357 http://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ200403000.htm

    Ouyang Ziyuan. Scientific Objectives of Chinese Lunar Exploration Project and Development Strategy[J]. Advance in Earth Sciences, 2004, 19(3): 355-357 http://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ200403000.htm
    [2]
    Barbosa R C. China's Chang'e-3 and Jade Rabbit Duo Land on the Moon[OL]. http://NASAspaceflight.com, 2013 https://www.nasaspaceflight.com/2013/12/china-jade-rabbit-lunar-arrival/
    [3]
    Li Jinling, Guo Li, Zhang Bo. The Chinese VLBI Network and Its Astrometric Role[J]. IAU Symposium, 2008, 246: 182-183 http://cn.bing.com/academic/profile?id=1989376622&encoded=0&v=paper_preview&mkt=zh-cn
    [4]
    Li Jinling, Guo Li, Qian Zhihan, The Application of the Instantaneous States Reduction to the Orbital Monitoring of Pivotal Arcs of the Chang'E-1 Satellite [J]. SCI China Ser G, 2009, 52(12):1 833-1 841 doi: 10.1007/s11433-009-0279-7
    [5]
    李金岭, 刘鹂, 郑为民, 等.定位归算在嫦娥二号任务实时阶段的应用[J].中国科学G辑, 2011, 41(7): 889-895 doi: 10.1360/132011-89

    Li Jinling, Liu Li, Zheng Weimin, et al. The Application of Positioning Reduction in the Real-time Stage of the Chang'E-2 Project[J]. Sci Sin-Phys Mech Astron, 2011, 41(7):889-895 doi: 10.1360/132011-89
    [6]
    魏二虎, 史青, 严韦, 等. ERP精度对"嫦娥一号"差分VLBI定位精度的影响[J].武汉大学学报·信息科学版, 2011, 36(11):1 324-1 327 http://mall.cnki.net/magazine/article/whch201111017.htm

    Wei Erhu, Shi Qing, Yan Wei, et al. Influence of ERP's Precision on CE-1's Positioning Based on Differential VLBI[J]. Geomatics and Information Science of Wuhan University, 2011, 36(11):1 324-1 327 http://mall.cnki.net/magazine/article/whch201111017.htm
    [7]
    张烁, 徐亚明, 刘少创, 等.嫦娥-3号月面巡视探测器立体相机的控制场检校[J].武汉大学学报·信息科学版, 2015, 40(11): 1 509-1 513 http://www.cnki.com.cn/article/cjfdtotal-whch201511015.htm

    Zhang Shuo, Xu Yaming, Liu Shaochuang, et al. Calibration of Chang'e-3 Lunar Rover Stereo-camera System Based on Control Field[J]. Geomatics and Information Science of Wuhan University, 2015, 40(11): 1 509-1 513 http://www.cnki.com.cn/article/cjfdtotal-whch201511015.htm
    [8]
    严韦, 魏二虎, 刘经南.ΔVLBI用于"嫦娥一号"地月转移轨道段定轨及EOP解算[J].武汉大学学报·信息科学版, 2012, 37(8): 960-962 http://mall.cnki.net/magazine/article/whch201208019.htm

    Yan Wei, Wei Erhu, Liu Jingnan. Determination of CE-1 Orbit and EOPs withΔVLBI Observation in Earth-moon Transfer Orbit[J]. Geomatics and Information Science of Wuhan University, 2012, 37(8): 960-962 http://mall.cnki.net/magazine/article/whch201208019.htm
    [9]
    陈明, 唐歌实, 曹建峰, 等.嫦娥一号绕月探测卫星精密定轨实现[J].武汉大学学报·信息科学版, 2011, 36(2): 212-217 http://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201102019.htm

    Chen Ming, Tang Geshi, Cao Jianfeng, et al. Precision Orbit Determination of CE-1 Lunar Satellite[J]. Geomatics and Information Science of Wuhan University, 2011, 36(2):212-217 http://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201102019.htm
    [10]
    郭丽.基于VLBI跟踪观测的空间飞行器瞬时状态参量归算[D].上海:中国科学院上海天文台, 2007 http://cdmd.cnki.com.cn/article/cdmd-80022-2007128431.htm

    Guo Li. Reduction of the Instantaneous State Vectors of Spacecraft Based on VLBI Tracking Data[D]. Shanghai: Shanghai Astronomical Observatory, CAS, 2007 http://cdmd.cnki.com.cn/article/cdmd-80022-2007128431.htm
    [11]
    钱志瀚, 李金岭.甚长基线干涉测量技术在深空探测中的应用[M].北京:中国科学技术出版社, 2012:107-110

    Qian Zhihan, Li Jinling, The Application of very Long Baseline Interferometry in the Deep Space Navigation[M]. Beijing: Chinese Science and Technology Press, 2012: 107-110
    [12]
    Salzberg I M. Tracking the Apollo Lunar Rover with Interferometry Techniques[J]. IEEE Proceeding, 1973, 61:1 233-1 236 doi: 10.1109/PROC.1973.9251
    [13]
    Goossens S, Matsumoto K, Ishihara Y, et al. Results for Orbit Determination of the Three Satellites of Kaguya[J]. J Geod Soc Jpn, 2009, 55:255-268 https://www.researchgate.net/publication/290171523_Results_for_orbit_determination_of_the_three_satellites_of_Kaguya
    [14]
    董光亮, 郝万宏, 李海涛, 等.同波束干涉测量对月面目标相对定位[J].清华大学学报(自然科学版), 2010, 50(7):1 118-1 124 http://www.cnki.com.cn/Article/CJFDTOTAL-QHXB201007034.htm

    Dong Guangliang, Hao Wanhong, Li Haitao, et al. Relative Position Determination on the Lunar Surface Using Same-beam Interferometry[J]. J Tsing Univ (Sci & Tech), 2010, 50(7): 1 118-1 124 http://www.cnki.com.cn/Article/CJFDTOTAL-QHXB201007034.htm
    [15]
    Liu Q, Zheng X, Huang Y, et al. Monitoring Motion and Measuring Relative Position of the Chang'E-3 Rover[J]. Radio Sci., 2014, 49: 1 080-1 086 doi: 10.1002/rds.v49.11
    [16]
    童锋贤, 郑为民, 舒逢春.VLBI相位参考成像方法用于玉兔巡视器精密定位[J], 科学通报, 2014, 59:3 362-3 369 doi: 10.1360/N972014-00578

    Tong Fengxian, Zheng Weimin, Shu Fengchun. Accurate Relative Positioning of Yutu Lunar Rover Using VLBI Phase-referencing Mapping Technology[J]. Chin Sci Bull (Chin Ver), 2014, 59: 3 362-3 369 doi: 10.1360/N972014-00578
    [17]
    王保丰, 周建亮, 唐歌实, 等.嫦娥三号巡视器视觉定位方法[J].中国科学:信息科学, 2014, 44:452-460 http://www.cnki.com.cn/Article/CJFDTOTAL-PZKX201404003.htm

    Wang Baofeng, Zhou Jianliang, Tang Geshi, et al. Research on Visual Localization Method of Lunar Rover[J]. Science China Informatron Sciences, 2014, 44: 452-460 http://www.cnki.com.cn/Article/CJFDTOTAL-PZKX201404003.htm
  • Related Articles

    [1]LI Dehai, WU Wentan, MA Huilin, BEI Jinzhong, ZHAO Yiyuan. Positioning Performance Analysis of Indoor Networks of Range-Based Reference Stations[J]. Geomatics and Information Science of Wuhan University, 2025, 50(1): 1-10. DOI: 10.13203/j.whugis20220513
    [2]CHEN Ruizhi, GUO Guangyi, CHEN Liang, NIU Xiaoguang. Application Status, Development and Future Trend of High-Precision Indoor Navigation and Tracking[J]. Geomatics and Information Science of Wuhan University, 2023, 48(10): 1591-1600. DOI: 10.13203/j.whugis20230212
    [3]WU Hui, LIU Zhe, HU Jin. Multi-objective Optimization of RSSI Sensor Deployment Considering Obstacles for Indoor Positioning[J]. Geomatics and Information Science of Wuhan University, 2023, 48(3): 471-479. DOI: 10.13203/j.whugis20200421
    [4]YANG Fan, LIU Jing-bin, GONG Xiao-dong, HUANG Ge-ge, LIU De-long, MAO Jing-feng. Mobile Phone-Based Indoor Positioning Method using Adaptive Compressed Sensing for Walking-Surveyed Fingerprinting[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20230241
    [5]LIU Jingbin, ZHAO Zhibo, HU Ningsong, HUANG Gege, GONG Xiaodong, YANG Sheng. Summary and Prospect of Indoor High-Precision Positioning Technology[J]. Geomatics and Information Science of Wuhan University, 2022, 47(7): 997-1008. DOI: 10.13203/j.whugis20220029
    [6]ZHEN Jie, WU Jianxin, LIU Jiping, XU Shenghua, ZHOU Zhenfa, XIN Haiqiang. A High Accuracy Positioning Method for Single Base Station in Indoor Emergency Environment[J]. Geomatics and Information Science of Wuhan University, 2020, 45(8): 1146-1154. DOI: 10.13203/j.whugis20200128
    [7]ZHAO Wangyu, LI Bijun, SHAN Yunxiao, XU Haoda. Vehicle Detection and Tracking Based on Fusion of Millimeter Wave Radar and Monocular Vision[J]. Geomatics and Information Science of Wuhan University, 2019, 44(12): 1832-1840. DOI: 10.13203/j.whugis20180146
    [8]CHEN Ruizhi, YE Feng. An Overview of Indoor Positioning Technology Based on Wi-Fi Channel State Information[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12): 2064-2070. DOI: 10.13203/j.whugis20180176
    [9]Liu Chunyan, Wang Jian. A Constrained KNN Indoor Positioning Model Based on a Geometric Clustering Fingerprinting Technique[J]. Geomatics and Information Science of Wuhan University, 2014, 39(11): 1287-1292.
    [10]FAN Lingang, CHEN Xi, CHEN Zezong, JIN Yan. Ocean Breaking Wave Detection with Microwave Doppler Radar[J]. Geomatics and Information Science of Wuhan University, 2013, 38(8): 998-1002.
  • Cited by

    Periodical cited type(8)

    1. 贺晗,李翠杰,杨怀志,朱星盛,刘洪润,秦健. 高铁北斗基准控制网构建及优化方法. 中国铁路. 2024(04): 22-28 .
    2. 张献志,周涛,叶远斌,张紫琼,吕鹏军. 惠州市国产北斗化平台实时定位精度测试分析. 北京测绘. 2024(05): 763-767 .
    3. 刘朝晖. 铁路BDS地基增强带状空间误差建模方法. 导航定位学报. 2024(03): 112-119 .
    4. 何庆,欧阳霖,陈春花,靳文凭,张玉冰,史照清. 湖南省卫星导航定位基准站网服务体系建设及思考. 国土资源导刊. 2024(03): 1-8 .
    5. 赵毅,吴晓莉,姜英明,冯彦同. 大规模GNSS基准站网坐标解算方法研究. 南京信息工程大学学报(自然科学版). 2022(06): 694-700 .
    6. 刘洋,曾群意,郭忠臣,胡茂林,任尚勇,黎洋. 千寻位置与RTK技术在电力工程测量中的比较分析. 电力勘测设计. 2021(07): 78-82 .
    7. 谭明建,张熙,石鑫. 分布式CORS资源协同服务技术实现. 导航定位学报. 2019(02): 118-123 .
    8. 张熙,陈现春,冯威,张晶晶,包海. 附有空间误差梯度信息的虚拟基准站服务技术. 西南交通大学学报. 2019(05): 1005-1011 .

    Other cited types(8)

Catalog

    Article views (1910) PDF downloads (290) Cited by(16)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return