GUO Li, LI Jinling, TONG Fengxian, WANG Guangli, HUANG Fei, LIU Qinghui, ZHENG Xin, ZHENG Weimin. Precisely Relative Positioning of Chang'E 3 Rover with SBI Delta VLBI Delay Measurements[J]. Geomatics and Information Science of Wuhan University, 2016, 41(8): 1125-1130. DOI: 10.13203/j.whugis20140439
Citation: GUO Li, LI Jinling, TONG Fengxian, WANG Guangli, HUANG Fei, LIU Qinghui, ZHENG Xin, ZHENG Weimin. Precisely Relative Positioning of Chang'E 3 Rover with SBI Delta VLBI Delay Measurements[J]. Geomatics and Information Science of Wuhan University, 2016, 41(8): 1125-1130. DOI: 10.13203/j.whugis20140439

Precisely Relative Positioning of Chang'E 3 Rover with SBI Delta VLBI Delay Measurements

Funds: 

The National Natural Science Foundation of China 11178024

The National Natural Science Foundation of China 11373060

The National Natural Science Foundation of China 11373061

The National Natural Science Foundation of China U1331205

The National Natural Science Foundation of China U1431117

Chinese Lunar Project Chang'E 3

the Natronal High Technology Research and Development Program of China (863 Program) 2012AA121603

the Program of Shanghai Science and Technology Committee 06DZ22101

the Project of Shanghai Outstanding Academic Leaders 14XD1404300

More Information
  • Received Date: March 20, 2016
  • Published Date: August 04, 2016
  • Based on Chinese VLBI Network, the Chang'E 3 lander and rover are traced with the same beam interferometry (SBI) method. The SBI delta group delay and phase delay measurements are obtained respectively from the digital signal and telemetry signals of the onboard detectors. The two detectors are close to each other in the flat region of Mare Imbrium on the moon. We present the kinematically combined or statistical relative positioning of the rover with respect to the lander in two dimensions with lunar height constrained to the lander. Relative position accuracy was better than 100m with SBI delta group observations, while the accuracy reached 1m with SBI delta phase delay measurements. Our positioning method will play an important role in relative positioning during the course of separation and locking of spacecrafts in the future Phase III of Chinese lunar project and other future deep space projects.
  • [1]
    欧阳自远, 我国月球探测的总体科学目标与发展战略[J].地球科学进展, 2004, 19(3): 355-357 http://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ200403000.htm

    Ouyang Ziyuan. Scientific Objectives of Chinese Lunar Exploration Project and Development Strategy[J]. Advance in Earth Sciences, 2004, 19(3): 355-357 http://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ200403000.htm
    [2]
    Barbosa R C. China's Chang'e-3 and Jade Rabbit Duo Land on the Moon[OL]. http://NASAspaceflight.com, 2013 https://www.nasaspaceflight.com/2013/12/china-jade-rabbit-lunar-arrival/
    [3]
    Li Jinling, Guo Li, Zhang Bo. The Chinese VLBI Network and Its Astrometric Role[J]. IAU Symposium, 2008, 246: 182-183 http://cn.bing.com/academic/profile?id=1989376622&encoded=0&v=paper_preview&mkt=zh-cn
    [4]
    Li Jinling, Guo Li, Qian Zhihan, The Application of the Instantaneous States Reduction to the Orbital Monitoring of Pivotal Arcs of the Chang'E-1 Satellite [J]. SCI China Ser G, 2009, 52(12):1 833-1 841 doi: 10.1007/s11433-009-0279-7
    [5]
    李金岭, 刘鹂, 郑为民, 等.定位归算在嫦娥二号任务实时阶段的应用[J].中国科学G辑, 2011, 41(7): 889-895 doi: 10.1360/132011-89

    Li Jinling, Liu Li, Zheng Weimin, et al. The Application of Positioning Reduction in the Real-time Stage of the Chang'E-2 Project[J]. Sci Sin-Phys Mech Astron, 2011, 41(7):889-895 doi: 10.1360/132011-89
    [6]
    魏二虎, 史青, 严韦, 等. ERP精度对"嫦娥一号"差分VLBI定位精度的影响[J].武汉大学学报·信息科学版, 2011, 36(11):1 324-1 327 http://mall.cnki.net/magazine/article/whch201111017.htm

    Wei Erhu, Shi Qing, Yan Wei, et al. Influence of ERP's Precision on CE-1's Positioning Based on Differential VLBI[J]. Geomatics and Information Science of Wuhan University, 2011, 36(11):1 324-1 327 http://mall.cnki.net/magazine/article/whch201111017.htm
    [7]
    张烁, 徐亚明, 刘少创, 等.嫦娥-3号月面巡视探测器立体相机的控制场检校[J].武汉大学学报·信息科学版, 2015, 40(11): 1 509-1 513 http://www.cnki.com.cn/article/cjfdtotal-whch201511015.htm

    Zhang Shuo, Xu Yaming, Liu Shaochuang, et al. Calibration of Chang'e-3 Lunar Rover Stereo-camera System Based on Control Field[J]. Geomatics and Information Science of Wuhan University, 2015, 40(11): 1 509-1 513 http://www.cnki.com.cn/article/cjfdtotal-whch201511015.htm
    [8]
    严韦, 魏二虎, 刘经南.ΔVLBI用于"嫦娥一号"地月转移轨道段定轨及EOP解算[J].武汉大学学报·信息科学版, 2012, 37(8): 960-962 http://mall.cnki.net/magazine/article/whch201208019.htm

    Yan Wei, Wei Erhu, Liu Jingnan. Determination of CE-1 Orbit and EOPs withΔVLBI Observation in Earth-moon Transfer Orbit[J]. Geomatics and Information Science of Wuhan University, 2012, 37(8): 960-962 http://mall.cnki.net/magazine/article/whch201208019.htm
    [9]
    陈明, 唐歌实, 曹建峰, 等.嫦娥一号绕月探测卫星精密定轨实现[J].武汉大学学报·信息科学版, 2011, 36(2): 212-217 http://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201102019.htm

    Chen Ming, Tang Geshi, Cao Jianfeng, et al. Precision Orbit Determination of CE-1 Lunar Satellite[J]. Geomatics and Information Science of Wuhan University, 2011, 36(2):212-217 http://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201102019.htm
    [10]
    郭丽.基于VLBI跟踪观测的空间飞行器瞬时状态参量归算[D].上海:中国科学院上海天文台, 2007 http://cdmd.cnki.com.cn/article/cdmd-80022-2007128431.htm

    Guo Li. Reduction of the Instantaneous State Vectors of Spacecraft Based on VLBI Tracking Data[D]. Shanghai: Shanghai Astronomical Observatory, CAS, 2007 http://cdmd.cnki.com.cn/article/cdmd-80022-2007128431.htm
    [11]
    钱志瀚, 李金岭.甚长基线干涉测量技术在深空探测中的应用[M].北京:中国科学技术出版社, 2012:107-110

    Qian Zhihan, Li Jinling, The Application of very Long Baseline Interferometry in the Deep Space Navigation[M]. Beijing: Chinese Science and Technology Press, 2012: 107-110
    [12]
    Salzberg I M. Tracking the Apollo Lunar Rover with Interferometry Techniques[J]. IEEE Proceeding, 1973, 61:1 233-1 236 doi: 10.1109/PROC.1973.9251
    [13]
    Goossens S, Matsumoto K, Ishihara Y, et al. Results for Orbit Determination of the Three Satellites of Kaguya[J]. J Geod Soc Jpn, 2009, 55:255-268 https://www.researchgate.net/publication/290171523_Results_for_orbit_determination_of_the_three_satellites_of_Kaguya
    [14]
    董光亮, 郝万宏, 李海涛, 等.同波束干涉测量对月面目标相对定位[J].清华大学学报(自然科学版), 2010, 50(7):1 118-1 124 http://www.cnki.com.cn/Article/CJFDTOTAL-QHXB201007034.htm

    Dong Guangliang, Hao Wanhong, Li Haitao, et al. Relative Position Determination on the Lunar Surface Using Same-beam Interferometry[J]. J Tsing Univ (Sci & Tech), 2010, 50(7): 1 118-1 124 http://www.cnki.com.cn/Article/CJFDTOTAL-QHXB201007034.htm
    [15]
    Liu Q, Zheng X, Huang Y, et al. Monitoring Motion and Measuring Relative Position of the Chang'E-3 Rover[J]. Radio Sci., 2014, 49: 1 080-1 086 doi: 10.1002/rds.v49.11
    [16]
    童锋贤, 郑为民, 舒逢春.VLBI相位参考成像方法用于玉兔巡视器精密定位[J], 科学通报, 2014, 59:3 362-3 369 doi: 10.1360/N972014-00578

    Tong Fengxian, Zheng Weimin, Shu Fengchun. Accurate Relative Positioning of Yutu Lunar Rover Using VLBI Phase-referencing Mapping Technology[J]. Chin Sci Bull (Chin Ver), 2014, 59: 3 362-3 369 doi: 10.1360/N972014-00578
    [17]
    王保丰, 周建亮, 唐歌实, 等.嫦娥三号巡视器视觉定位方法[J].中国科学:信息科学, 2014, 44:452-460 http://www.cnki.com.cn/Article/CJFDTOTAL-PZKX201404003.htm

    Wang Baofeng, Zhou Jianliang, Tang Geshi, et al. Research on Visual Localization Method of Lunar Rover[J]. Science China Informatron Sciences, 2014, 44: 452-460 http://www.cnki.com.cn/Article/CJFDTOTAL-PZKX201404003.htm
  • Related Articles

    [1]WU Jiaqi, JIANG Yonghua, SHEN Xin, LI Beibei, PAN Shenlin. Satellite Video Motion Detection Supported by Decision Tree Weak Classification[J]. Geomatics and Information Science of Wuhan University, 2019, 44(8): 1182-1190. DOI: 10.13203/j.whugis20180094
    [2]FU Zisheng, LI Qiuping, LIU Lin, ZHOU Suhong. Identification of Urban Network Congested Segments Using GPS Trajectories Double-Clustering Method[J]. Geomatics and Information Science of Wuhan University, 2017, 42(9): 1264-1270. DOI: 10.13203/j.whugis20150036
    [3]DENG Min, CHEN Ti, YANG Wentao. A New Method of Modeling Spatio-temporal Sequence by Considering Spatial Scale Characteristics[J]. Geomatics and Information Science of Wuhan University, 2015, 40(12): 1625-1632. DOI: 10.13203/j.whugis20130842
    [4]FU Zhongliang, LIU Siyuan. MR-tree with Voronoi Diagrams for Parallel Spatial Queries[J]. Geomatics and Information Science of Wuhan University, 2012, 37(12): 1490-1494.
    [5]HE Chu, LIU Ming, XU Lianyu, LIU Longzhu. A Hierarchical Classification Method Based on Feature Selection and Adaptive Decision Tree for SAR Image[J]. Geomatics and Information Science of Wuhan University, 2012, 37(1): 46-49.
    [6]ZHANG Lu, GAO Zhihong, LIAO Mingsheng, LI Xinyan. Estimating Urban Impervious Surface Percentage with Multi-source Remote Sensing Data[J]. Geomatics and Information Science of Wuhan University, 2010, 35(10): 1212-1216.
    [7]HAN Tao, XU Xiaotao, XIE Yaowen. Automated Construction and Classification of Decision Tree Classifier Based on Single-Temporal MODIS Data[J]. Geomatics and Information Science of Wuhan University, 2009, 34(2): 191-194.
    [8]LIAO Mingsheng, JIANG Liming, LIN Hui, YANG Limin. Estimating Urban Impervious Surface Percent Using Boosting as a Refinement of CART Analysis[J]. Geomatics and Information Science of Wuhan University, 2007, 32(12): 1099-1102.
    [9]YU Xin, ZHENG Zhaobao, YE Zhiwei, TIAN Liqiao. Texture Classification Based on Tree Augmented Naive Bayes Classifier[J]. Geomatics and Information Science of Wuhan University, 2007, 32(4): 287-289.
    [10]GUO Jing, LIU Guangjun, DONG Xurong, GUO Lei. 2-Level R-tree Spatial Index Based on Spatial Grids and Hilbert R-tree[J]. Geomatics and Information Science of Wuhan University, 2005, 30(12): 1084-1088.
  • Cited by

    Periodical cited type(13)

    1. 陈月,王磊,池深深,王羽,戚鑫鑫,朱尚军. 基于SBAS-InSAR和CNN-GRU模型的采动村庄地表沉降监测预计. 金属矿山. 2025(02): 138-144 .
    2. 何毅,姚圣,陈毅,闫浩文,张立峰. ConvLSTM神经网络的时序InSAR地面沉降时空预测. 武汉大学学报(信息科学版). 2025(03): 483-496 .
    3. 倪尔瑞,张建新,邱明剑,权力奥,朱晓峻. 基于SBAS-InSAR技术的淮北市地表沉降监测分析. 北京测绘. 2024(03): 312-317 .
    4. 吴启琛,于瑞鹏,王丽,赵乙泽,范开放. 利用Sentinel-1的山东枣庄高新区地面沉降监测与分析. 地理空间信息. 2024(06): 80-83 .
    5. 杨芳,丁仁军,李勇发. 基于SBAS-InSAR技术的金沙江流域典型滑坡时空演化特征分析. 测绘通报. 2024(11): 102-107 .
    6. 祝杰,李瑜,师宏波,刘洋洋,韩宇飞,邵银星,王坦. 鹤岗煤矿区地面沉降时空特征InSAR时间序列监测研究. 中国地震. 2023(03): 596-608 .
    7. 柴龙飞,魏路,张震. 基于SBAS-InSAR的安徽省宿州市埇桥区2019—2022年地面沉降监测及影响因素分析研究. 安徽地质. 2023(04): 348-352 .
    8. 祝杰,韩宇飞,王坦,李瑜,王阅兵,师宏波,刘洋洋,樊俊屹,邵银星. 2017年九寨沟M_S7.0地震同震地表三维形变场解算研究. 中国地震. 2022(02): 348-359 .
    9. 吴毅彬,葛红斌,刘光庆,刘海旺. 基于MT-InSAR技术的厦门新机场填海区沉降监测. 工程勘察. 2021(02): 57-61 .
    10. 翟振起. 基于InSAR沉降监测技术的城市供水管线安全监测系统开发. 水利科学与寒区工程. 2021(01): 103-106 .
    11. 廖明生,王茹,杨梦诗,王楠,秦晓琼,杨天亮. 城市目标动态监测中的时序InSAR分析方法及应用. 雷达学报. 2020(03): 409-424 .
    12. 熊寻安,王明洲,龚春龙. MT-InSAR技术监测水库土石坝表面变形研究. 测绘地理信息. 2019(05): 78-81 .
    13. 王茹,杨天亮,杨梦诗,廖明生,林金鑫,张路. PS-InSAR技术对上海高架路的沉降监测与归因分析. 武汉大学学报(信息科学版). 2018(12): 2050-2057 .

    Other cited types(4)

Catalog

    Article views (1911) PDF downloads (290) Cited by(17)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return