KONG Xiangxue, SHEN Wenbin, ZHANG Shengjun. Determination of the Geopotential and Orthometric Height Difference Based on the Two Way Satellite Time and Frequency Transfer Observations[J]. Geomatics and Information Science of Wuhan University, 2016, 41(7): 969-973,988. DOI: 10.13203/j.whugis20140296
Citation: KONG Xiangxue, SHEN Wenbin, ZHANG Shengjun. Determination of the Geopotential and Orthometric Height Difference Based on the Two Way Satellite Time and Frequency Transfer Observations[J]. Geomatics and Information Science of Wuhan University, 2016, 41(7): 969-973,988. DOI: 10.13203/j.whugis20140296

Determination of the Geopotential and Orthometric Height Difference Based on the Two Way Satellite Time and Frequency Transfer Observations

Funds: 

The National Natural Science Foundation of China Nos.41174011, 41128003, 41210006, 41021061, 40974015

the National 973 Program of China No. 2013CB733301

More Information
  • Received Date: October 31, 2014
  • Published Date: July 04, 2016
  • According to general relativity theory, the geopotential difference between two positions gives rise to a clock's running rate difference (time difference) or oscillation frequency difference. Inversely, the geopotential difference and height difference between these two positions can be determined by measuring the frequency or time difference between two clocks located at these two positions. Using the TWSTFT, two way satellite time and frequency transfer data sets at five timing-keeping stations released by the BIPM ( Bureau International des Poids et Mesures), we determined the geopotential difference and height difference between any two of the five stations based upon the gravity frequency shift method and TWSTFT technique. Compared with EGM2008 model results, the standard deviations of the geopotential and height differences are 129.2 m2·s-2and 13.2m, resp-ectively. Our experimental results are consistent with the current stability level 10E-15 of the atomic clocks installed at the time-keeping stations. The quick development of time-frequency science, including highly precise atomic clocks or optical clocks, creates the potential for using the TWSTFT technique to determine geopotential and height difference, as well as enable its extensive application in various fields.
  • [1]
    Hofmann-Wellenhof B, Moritz H. Physical Geodesy[M]. Austria: Springer-Verlag Wien, 2006
    [2]
    Shen Wenbin, Ning Jinsheng, Liu J, et al. Determination of the Geopotential and Orthometric Height based on Frequency Shift Equation [J]. Natural Science , 2011, 3(5):388-396
    [3]
    Bjerhammar A. On a Relativistic Geodesy [J]. Bulletin Géodésique ,1985,59(3):207-220
    [4]
    Bjerhammar A. Relativistic Geodesy [J]. NOAA Technical Report ,1986,118(36):1-45
    [5]
    Shen W B, Chao D, Jin B. On relativistic geoid [J].Bulletin Géodésique , 1993, 52(3): 207-216
    [6]
    Shen W B, Ning J, Chao D, et al.A Proposal on the Test of General Relativity by Clock Transportation Experiments [J]. Advances in Space Research , 2009, 43(1): 164-166
    [7]
    申文斌,宁津生,李建成,等. 论相对论重力位及相对论大地水准面 [J]. 武汉大学学报·信息科学版, 2004, 29(10): 897-900

    Shen Wenbin, Ning Jinsheng, Li Jiancheng, et al. On the Relativistic Geopotential and Relativistic Geoid[J]. Geomatics and Information Science of Wuhan University , 2004, 29(10): 897-900
    [8]
    申文斌, 宁津生, 晁定波. 相对论与相对论重力测量 [M]. 武汉:武汉大学出版社, 2008

    Shen Wenbin, Ning Jinsheng, Chao Dingbo. Relativity and Relativistic Gravity Measurements[M]. Wuhan: Wuhan University Press,2008
    [9]
    申文斌, 晃定波, 金标仁. 等频大地水准面的概念及应用 [J]. 武汉测绘科技大学学报,1994, 19(4): 232-238

    Shen Wenbin, Chao Dingbo, Jin Biaoren. The Concept and Application of the Equi-frequency Geoid[J].Journal of Wuhan Technical University of Surveying and Mapping ,1994, 19(4): 232-238
    [10]
    Hafele J C, Keating R E. Around-the-World Atomic Clocks: Predicted Relativistic Time Gains [J]. Science, New Series , 1972, 177(4 044):166-167
    [11]
    Hafele J C, Keating R E. Around-the-World Atomic Clocks: Cbserved Relativistic Time Gains[J]. Science , 1972, 177(4 044): 168-170
    [12]
    Pound R V, Snider J L. Effect of Gravity on Gamma Radiation [J]. Physical Review , 1965,140(3B): 788-803
    [13]
    Snider J L. New Measurement of the Solar Gravitational Red Shift [J]. Physical Review Letters , 1972,28(13): 853-856
    [14]
    Clifford M W. Gravitational Red-Shift Measurements as Tests of Nonmetric Theories of Gravity [J]. Physical Review D , 1974, 10(8): 2 330-2 337
    [15]
    Nikolaos K P, Marc A W. The Relativistic Redshift with 3×10-17Uncertainty at NIST, Boulder, Colorado, USA [J]. Metrologia, 2003, 40(2): 66-73
    [16]
    Michael A H, Steven C, Achim P, et al. Equivalence Principle and Gravitational Redshift[J]. Physical Review Letters , 2011,106(15): 1-4
    [17]
    Vessot R F C, Levine M W, Mattison E M, et al.Test of Relativistic Gravitation with a Space-borne Hydrogen Maser [J]. Physical Review Letters , 1980, 45(26): 2 081-2 084
    [18]
    Opat G I, Unruh W G. Theory of an Earth-BoundClock Comparison Experiment as Test of the Principle of Equivalence [J]. Physical Review D , 1991, 44(10): 3 342-3 344
    [19]
    Heavner T P, Jefferts S R, Donley A, et al. Recent Improvements in NIST-F1 and a Resulting Accuracy of δf/f =0.61×10-15[J].IEEE Transactions on Instrumenatation and Measurement , 2005, 54(2): 842-845
    [20]
    Parker T E, Jefferts S R, Heavner T P, et al. Operation of the NIST-F1 Caesium Fountain Primary Frequency Standard with a Maser Ensemble, Including the Impact of Frequency Transfer Noise [J]. Metrologia , 2005, 42(5): 423-430
    [21]
    Sullivan D B, Ashby N, Donley E A, et al. PARCS: NASA's Laser-cooled Atomic Clock in Space [J]. Advances in Space Research , 2005, 36(1): 107-113
    [22]
    Jiang Z, Lewandowski W, Konaté H. TWSTFT Data Treatment for UTC Time Transfer[C]. The 41th Annual Precise Time and Time Interval (PTTI) Meeting, Frace, 2009
    [23]
    万俊堃, 申文斌, 杨茜, 等. 利用 GPS 信号测定两地重力位差的实验研究 [J]. 测绘科学, 2009, 34(1):22-26

    Wan Junkun,Shen Wenbin, Yang Xi, et al. Experimental Investigations of the Geopotential Difference Between Two Stations Based on the GPS Signals[J].Science of Surveying and Mapping , 2009, 34(1):22-26
    [24]
    刘洋,申文斌,夏敏,等. 利用GPS共视法确定重力位差及海拔高的实验研究[J].武汉大学学报·信息科学版, 2011, 36(6): 640-643

    Liu Yang, Shen Wenbin, Xia Min, et al. Determination of Geopotential Difference and Orthometric Height Difference Using GPS Common View[J]. Geomatics and Information Science of Wuhan University ,2011, 36(6): 640-643
    [25]
    武文俊. 卫星双向时间频率传递的误差研究[D].西安:中国科学院国家授时中心, 2012

    Wu Wenjun. Research on Two-way Satellite Time and Frequency Transfer Errors[D]. Xi'an: National Time Service Center,2012
    [26]
    高小珣,高源,张越,等. GPS共视法远距离时间频率传递技术研究[J].计量学报, 2008, 29(1): 80-83

    Gao Xiaoxun,Gao Yuan, Zhang Yue, et al.GPS Common View Method for Remote Time and Frequency Transfer[J]. Acta Metrologica Sinica , 2008, 29(1): 80-83
    [27]
    Nikolaos K P, Simon A H, Steve C K.The Development and Evaluation of the Earth Gravitational Model 2008 (EGM2008)[J]. J Geophys Res , 2012, 117(B4):1-38
    [28]
    Hinkley N, Sherman J A, Phillips N B, et al. An Atomic Clock with 10-18Instability[J]. Science , 2013, 341(6 151): 1 215-1 218
  • Related Articles

    [1]CAO Jianfeng, KONG Jing, MAN Haijun, JU Bing, ZHANG Yu, LIU Huicui. Onboard Ultra-Stable Oscillator Long-Term Drift Calibration for Tianwen-1 Mission[J]. Geomatics and Information Science of Wuhan University, 2024, 49(12): 2181-2186. DOI: 10.13203/j.whugis20220082
    [2]ZHAO Danning, LEI Yu. Long-Term Characteristics Analysis of GLONASS In-Flight Clocks[J]. Geomatics and Information Science of Wuhan University, 2021, 46(6): 895-904. DOI: 10.13203/j.whugis20190233
    [3]WU Yiwei, YANG Bin, XIAO Shenghong, WANG Maolei. Atomic Clock Models and Frequency Stability Analyses[J]. Geomatics and Information Science of Wuhan University, 2019, 44(8): 1226-1232. DOI: 10.13203/j.whugis20180058
    [4]LI Mingzhe, ZHANG Shaocheng, HU Youjian, HOU Weizhen. Comparison of GNSS Satellite Clock Stability Based on High Frequency Observations[J]. Geomatics and Information Science of Wuhan University, 2018, 43(10): 1490-1495, 1503. DOI: 10.13203/j.whugis20160537
    [5]WANG Ning, WANG Yupu, LI Linyang, ZHAI Shufeng, LV Zhiping. Stability Analysis of the Space-borne Atomic Clock Frequency for BDS[J]. Geomatics and Information Science of Wuhan University, 2017, 42(9): 1256-1263. DOI: 10.13203/j.whugis20150806
    [6]GONG Hang, LIU Zengjun, PENG Jing, WANG Feixue. Estimation Method of GNSS On-Board Clock Short-Term Stability Based on Smoothed Broadcast Ephemeris[J]. Geomatics and Information Science of Wuhan University, 2013, 38(7): 837-841.
    [7]ZHANG Caihong, LIU Jingnan, NIE Guigen. The Comparative Analysis of Long-term Stability of Pulsar Time and That of Atomic Time Using σ_z(τ)[J]. Geomatics and Information Science of Wuhan University, 2012, 37(7): 847-850.
    [8]MAO Yue, CHEN Jianpeng, DAI Wei, JIA Xiaolin. Analysis of On-board Atomic Clock Stability Influences[J]. Geomatics and Information Science of Wuhan University, 2011, 36(10): 1182-1186.
    [9]GUO Hairong, YANG Yuanxi. Analyses of Main Error Sources on Time-Domain Frequency Stability for Atomic Clocks of Navigation Satellites[J]. Geomatics and Information Science of Wuhan University, 2009, 34(2): 218-221.
    [10]Zhan Shaofeng. On Partial Extreme Stability[J]. Geomatics and Information Science of Wuhan University, 1990, 15(4): 85-90.
  • Cited by

    Periodical cited type(43)

    1. 崔婷婷,安雪莲,孙德亮,陈东升,朱有晨. 基于SHAP的可解释机器学习的滑坡易发性评价模型. 成都理工大学学报(自然科学版). 2025(01): 153-172 .
    2. 黄发明,张崟琅,郭子正,范宣梅,周创兵. 不同分级方法对区域滑坡易发性区划的影响. 工程科学与技术. 2024(01): 148-159 .
    3. 邬礼扬,殷坤龙,曾韬睿,刘书豪,刘真意. 不同栅格尺寸下输电线路地质灾害易发性评价. 地质科技通报. 2024(01): 241-252 .
    4. 陈宾,李颖懿,张联志,屈添强,魏娜,刘宁,黄春林. 地质灾害易发性评价因子分级的AIFFC算法优化. 中国地质灾害与防治学报. 2024(01): 72-81 .
    5. 刘长江,罗晓东. 南疆盐渍土峡谷景区滑坡易发性评价. 科技与创新. 2024(05): 71-74+77 .
    6. 何哲,石玉玲,李富春,贾卓龙,晏长根. 基于LightGBM模型的甘肃省临夏县滑坡易发性评价. 水资源与水工程学报. 2024(01): 197-205+216 .
    7. 田尤,黄海,高波,陈龙,李元灵,杨东旭,张佳佳,李洪梁. 考虑冻融侵蚀型物源的不同流域单元泥石流易发性评价——以藏东贡觉地区为例. 冰川冻土. 2024(01): 40-51 .
    8. 高星星,马鹏斐,吕义清,赵金亮,何海龙. 基于统计方法耦合地理探测器的地质灾害易发性评价——以吕梁山区为例. 水土保持通报. 2024(01): 193-205 .
    9. 肖燕,王潇,姚海鹏. 基于易发程度指数法的集镇斜坡地质灾害易发性评价——以茶恩寺镇斜坡为例. 科技和产业. 2024(09): 153-157 .
    10. 蔡抒,程先富. 基于不同模型的安徽大别山区滑坡易发性评价对比分析. 安徽师范大学学报(自然科学版). 2024(02): 152-160 .
    11. 肖海平,万俊辉,陈兰兰,范永超,陈磊. 加权信息量支持下融合InSAR形变特征的滑坡易发性评价. 大地测量与地球动力学. 2024(07): 718-724 .
    12. 李亚,邓南荣,陈朝,陈进栋,王琦,李冠虹. 基于多源模型的粤北山区县域地质灾害危险性评价与驱动力分析. 地球与环境. 2024(03): 330-342 .
    13. 寸得欣,令狐昌卫,马一奇,尹林虎,陈庆松,刘振南,涂春霖. 基于GIS和加权信息量模型的富源县地质灾害易发性评价. 科学技术与工程. 2024(18): 7563-7573 .
    14. 王清和,郑宇,刘珮勋,陈尚波,李佳. 非煤地下矿山灾害影响因素分析与风险管控体系研究. 世界有色金属. 2024(08): 192-195 .
    15. 王阳,周小虎,史小辉,黄琪,刘禄山. 青藏高原东北缘清水河流域地貌特征及其构造意义. 成都理工大学学报(自然科学版). 2024(04): 624-639+648 .
    16. 彭志忠,袁飞云,何朝阳,李东来,解明礼,饶泽迅. 地质灾害多源基础数据结构体系及应用. 成都理工大学学报(自然科学版). 2024(04): 675-686 .
    17. 张云,资锋,曹运江,成湘伟,韩用顺,唐龙. GIS支持下基于归一化信息量模型的地质灾害易发性评价. 矿业工程研究. 2024(02): 20-28 .
    18. 孙琪皓,刘桂卫,王飞,张璇钰,王衍汇. 铁路地质灾害早期识别与监测预警技术及应用研究. 铁道标准设计. 2024(09): 24-31 .
    19. 许烈,巨能攀,邓明东,解明礼,周福军,李朝纲,唐颍. 不同评价单元的滑坡易发性评价精度对比分析. 工程地质学报. 2024(05): 1640-1653 .
    20. 于小曼,简文星,邵山,王浩,简志华,吴凯锋,张峰. GIS支持下基于CF和CF-LR模型的恩施州滑坡灾害易发性评价. 地质与资源. 2024(05): 716-724 .
    21. 张凯. 区域滑坡地质灾害易发性评价研究. 科技与创新. 2024(22): 145-147 .
    22. 李昊,代泽林,毕杰. 输电线路地质灾害风险评估策略及方法. 云南电业. 2024(06): 8-13 .
    23. 刘金沧,王欢欢,李云,杨婷. 基于支持向量机的华南斜坡类地质灾害易发性评价:以肇庆市怀集县为例. 时空信息学报. 2024(06): 785-794 .
    24. 王瑛,祁京,王姝苓,李璨,俞海洋. 基于聚类与统计分级的河北省气象灾害综合区划研究. 灾害学. 2023(02): 85-88+113 .
    25. 张伟,周松林,尹仑. 基于优化MaxEnt模型的高山峡谷区地质灾害易发性评价——以云南省德钦县为例. 灾害学. 2023(02): 185-190 .
    26. 徐澯,黄智卿,宫阿都,巴婉茹. 面向不可移动文物的地震灾害风险评估——以福建省全国重点文物保护单位石窟寺及石刻为例. 北京师范大学学报(自然科学版). 2023(03): 449-455 .
    27. 马博,朱杰勇,刘帅,杨得虎. 联合时序InSAR和滑坡灾害易发性的元阳县滑坡灾害隐患识别. 地质灾害与环境保护. 2023(03): 8-14 .
    28. 章昱,王磊,伏永朋,刘亚磊,黄皓. 基于斜坡单元与信息量法的丹江口库区典型流域地质灾害易发性评价. 华南地质. 2023(03): 512-522 .
    29. 陈思尧,游水生,杨剑红,刘虹强. 基于信息量模型与层次分析法的地质灾害易发性评价——以宣汉县为例. 科技和产业. 2023(22): 221-229 .
    30. 孙庆敏,葛永刚,陈攀,梁馨月,杜宇琛. 汶川典型植物根-土复合体抗剪强度影响因素评价. 水土保持学报. 2022(01): 58-65 .
    31. 张重,龚健,李靖业,张子煜,张木茜. 基于信息量模型的三江源东部草地退化易发性评价——以青海省果洛州为例. 资源科学. 2022(03): 464-479 .
    32. 温鑫,范宣梅,陈兰,刘世康. 基于信息量模型的地质灾害易发性评价:以川东南古蔺县为例. 地质科技通报. 2022(02): 290-299 .
    33. 赵腾跃,何政伟. 基于信息量的金川县斜坡地质灾害易发性评价. 物探化探计算技术. 2022(02): 203-212 .
    34. 黄发明,石雨,欧阳慰平,洪安宇,曾子强,徐富刚. 基于证据权和卡方自动交互检测决策树的滑坡易发性预测. 土木与环境工程学报(中英文). 2022(05): 16-28 .
    35. 谢浪. 矿山地面塌陷区地质灾害风险模糊综合监测方法. 矿冶. 2022(04): 7-12+18 .
    36. 龚凌枫,徐伟,铁永波,卢佳燕,张玙,高延超. 基于数值模拟的城镇地质灾害危险性评价方法. 中国地质调查. 2022(04): 82-91 .
    37. 徐锦宏,翁茂芝,胡元平,王宁涛. 长江上游磨刀溪流域地质灾害易发性分区评价. 资源环境与工程. 2022(04): 494-503 .
    38. 简鹏,李文彦,张治家,时伟,党发宁,郭红东,李松. 基于多因素加权指数和法的区域地质灾害易发性评价研究——以麦积区为例. 甘肃地质. 2022(03): 63-72 .
    39. 周萍,邓辉,张文江,薛东剑,吴先谭,卓文浩. 基于信息量模型和机器学习方法的滑坡易发性评价研究——以四川理县为例. 地理科学. 2022(09): 1665-1675 .
    40. 田媛,巨能攀,解明礼,刘秀伟,何朝阳. 滑坡编录表达模式对易发性评价结果的影响. 成都理工大学学报(自然科学版). 2022(05): 606-615 .
    41. 王小东,罗园,付景保. 基于GIS的白龙江引水工程水源区地质灾害易发性评价. 南水北调与水利科技(中英文). 2022(06): 1231-1239 .
    42. 沈迪,郭进京,王志恒,陈俊合. 基于热点分析与地理探测器的地质灾害敏感性评价. 环境生态学. 2021(04): 83-89 .
    43. 黄立鑫,郝君明,李旺平,周兆叶,贾佩钱. 基于RBF神经网络-信息量耦合模型的滑坡易发性评价——以甘肃岷县为例. 中国地质灾害与防治学报. 2021(06): 116-126 .

    Other cited types(29)

Catalog

    Article views (2136) PDF downloads (268) Cited by(72)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return