Citation: | KONG Xiangxue, SHEN Wenbin, ZHANG Shengjun. Determination of the Geopotential and Orthometric Height Difference Based on the Two Way Satellite Time and Frequency Transfer Observations[J]. Geomatics and Information Science of Wuhan University, 2016, 41(7): 969-973,988. DOI: 10.13203/j.whugis20140296 |
[1] |
Hofmann-Wellenhof B, Moritz H. Physical Geodesy[M]. Austria: Springer-Verlag Wien, 2006
|
[2] |
Shen Wenbin, Ning Jinsheng, Liu J, et al. Determination of the Geopotential and Orthometric Height based on Frequency Shift Equation [J]. Natural Science , 2011, 3(5):388-396
|
[3] |
Bjerhammar A. On a Relativistic Geodesy [J]. Bulletin Géodésique ,1985,59(3):207-220
|
[4] |
Bjerhammar A. Relativistic Geodesy [J]. NOAA Technical Report ,1986,118(36):1-45
|
[5] |
Shen W B, Chao D, Jin B. On relativistic geoid [J].Bulletin Géodésique , 1993, 52(3): 207-216
|
[6] |
Shen W B, Ning J, Chao D, et al.A Proposal on the Test of General Relativity by Clock Transportation Experiments [J]. Advances in Space Research , 2009, 43(1): 164-166
|
[7] |
申文斌,宁津生,李建成,等. 论相对论重力位及相对论大地水准面 [J]. 武汉大学学报·信息科学版, 2004, 29(10): 897-900
Shen Wenbin, Ning Jinsheng, Li Jiancheng, et al. On the Relativistic Geopotential and Relativistic Geoid[J]. Geomatics and Information Science of Wuhan University , 2004, 29(10): 897-900
|
[8] |
申文斌, 宁津生, 晁定波. 相对论与相对论重力测量 [M]. 武汉:武汉大学出版社, 2008
Shen Wenbin, Ning Jinsheng, Chao Dingbo. Relativity and Relativistic Gravity Measurements[M]. Wuhan: Wuhan University Press,2008
|
[9] |
申文斌, 晃定波, 金标仁. 等频大地水准面的概念及应用 [J]. 武汉测绘科技大学学报,1994, 19(4): 232-238
Shen Wenbin, Chao Dingbo, Jin Biaoren. The Concept and Application of the Equi-frequency Geoid[J].Journal of Wuhan Technical University of Surveying and Mapping ,1994, 19(4): 232-238
|
[10] |
Hafele J C, Keating R E. Around-the-World Atomic Clocks: Predicted Relativistic Time Gains [J]. Science, New Series , 1972, 177(4 044):166-167
|
[11] |
Hafele J C, Keating R E. Around-the-World Atomic Clocks: Cbserved Relativistic Time Gains[J]. Science , 1972, 177(4 044): 168-170
|
[12] |
Pound R V, Snider J L. Effect of Gravity on Gamma Radiation [J]. Physical Review , 1965,140(3B): 788-803
|
[13] |
Snider J L. New Measurement of the Solar Gravitational Red Shift [J]. Physical Review Letters , 1972,28(13): 853-856
|
[14] |
Clifford M W. Gravitational Red-Shift Measurements as Tests of Nonmetric Theories of Gravity [J]. Physical Review D , 1974, 10(8): 2 330-2 337
|
[15] |
Nikolaos K P, Marc A W. The Relativistic Redshift with 3×10-17Uncertainty at NIST, Boulder, Colorado, USA [J]. Metrologia, 2003, 40(2): 66-73
|
[16] |
Michael A H, Steven C, Achim P, et al. Equivalence Principle and Gravitational Redshift[J]. Physical Review Letters , 2011,106(15): 1-4
|
[17] |
Vessot R F C, Levine M W, Mattison E M, et al.Test of Relativistic Gravitation with a Space-borne Hydrogen Maser [J]. Physical Review Letters , 1980, 45(26): 2 081-2 084
|
[18] |
Opat G I, Unruh W G. Theory of an Earth-BoundClock Comparison Experiment as Test of the Principle of Equivalence [J]. Physical Review D , 1991, 44(10): 3 342-3 344
|
[19] |
Heavner T P, Jefferts S R, Donley A, et al. Recent Improvements in NIST-F1 and a Resulting Accuracy of δf/f =0.61×10-15[J].IEEE Transactions on Instrumenatation and Measurement , 2005, 54(2): 842-845
|
[20] |
Parker T E, Jefferts S R, Heavner T P, et al. Operation of the NIST-F1 Caesium Fountain Primary Frequency Standard with a Maser Ensemble, Including the Impact of Frequency Transfer Noise [J]. Metrologia , 2005, 42(5): 423-430
|
[21] |
Sullivan D B, Ashby N, Donley E A, et al. PARCS: NASA's Laser-cooled Atomic Clock in Space [J]. Advances in Space Research , 2005, 36(1): 107-113
|
[22] |
Jiang Z, Lewandowski W, Konaté H. TWSTFT Data Treatment for UTC Time Transfer[C]. The 41th Annual Precise Time and Time Interval (PTTI) Meeting, Frace, 2009
|
[23] |
万俊堃, 申文斌, 杨茜, 等. 利用 GPS 信号测定两地重力位差的实验研究 [J]. 测绘科学, 2009, 34(1):22-26
Wan Junkun,Shen Wenbin, Yang Xi, et al. Experimental Investigations of the Geopotential Difference Between Two Stations Based on the GPS Signals[J].Science of Surveying and Mapping , 2009, 34(1):22-26
|
[24] |
刘洋,申文斌,夏敏,等. 利用GPS共视法确定重力位差及海拔高的实验研究[J].武汉大学学报·信息科学版, 2011, 36(6): 640-643
Liu Yang, Shen Wenbin, Xia Min, et al. Determination of Geopotential Difference and Orthometric Height Difference Using GPS Common View[J]. Geomatics and Information Science of Wuhan University ,2011, 36(6): 640-643
|
[25] |
武文俊. 卫星双向时间频率传递的误差研究[D].西安:中国科学院国家授时中心, 2012
Wu Wenjun. Research on Two-way Satellite Time and Frequency Transfer Errors[D]. Xi'an: National Time Service Center,2012
|
[26] |
高小珣,高源,张越,等. GPS共视法远距离时间频率传递技术研究[J].计量学报, 2008, 29(1): 80-83
Gao Xiaoxun,Gao Yuan, Zhang Yue, et al.GPS Common View Method for Remote Time and Frequency Transfer[J]. Acta Metrologica Sinica , 2008, 29(1): 80-83
|
[27] |
Nikolaos K P, Simon A H, Steve C K.The Development and Evaluation of the Earth Gravitational Model 2008 (EGM2008)[J]. J Geophys Res , 2012, 117(B4):1-38
|
[28] |
Hinkley N, Sherman J A, Phillips N B, et al. An Atomic Clock with 10-18Instability[J]. Science , 2013, 341(6 151): 1 215-1 218
|
[1] | CAO Jianfeng, KONG Jing, MAN Haijun, JU Bing, ZHANG Yu, LIU Huicui. Onboard Ultra-Stable Oscillator Long-Term Drift Calibration for Tianwen-1 Mission[J]. Geomatics and Information Science of Wuhan University, 2024, 49(12): 2181-2186. DOI: 10.13203/j.whugis20220082 |
[2] | ZHAO Danning, LEI Yu. Long-Term Characteristics Analysis of GLONASS In-Flight Clocks[J]. Geomatics and Information Science of Wuhan University, 2021, 46(6): 895-904. DOI: 10.13203/j.whugis20190233 |
[3] | WU Yiwei, YANG Bin, XIAO Shenghong, WANG Maolei. Atomic Clock Models and Frequency Stability Analyses[J]. Geomatics and Information Science of Wuhan University, 2019, 44(8): 1226-1232. DOI: 10.13203/j.whugis20180058 |
[4] | LI Mingzhe, ZHANG Shaocheng, HU Youjian, HOU Weizhen. Comparison of GNSS Satellite Clock Stability Based on High Frequency Observations[J]. Geomatics and Information Science of Wuhan University, 2018, 43(10): 1490-1495, 1503. DOI: 10.13203/j.whugis20160537 |
[5] | WANG Ning, WANG Yupu, LI Linyang, ZHAI Shufeng, LV Zhiping. Stability Analysis of the Space-borne Atomic Clock Frequency for BDS[J]. Geomatics and Information Science of Wuhan University, 2017, 42(9): 1256-1263. DOI: 10.13203/j.whugis20150806 |
[6] | GONG Hang, LIU Zengjun, PENG Jing, WANG Feixue. Estimation Method of GNSS On-Board Clock Short-Term Stability Based on Smoothed Broadcast Ephemeris[J]. Geomatics and Information Science of Wuhan University, 2013, 38(7): 837-841. |
[7] | ZHANG Caihong, LIU Jingnan, NIE Guigen. The Comparative Analysis of Long-term Stability of Pulsar Time and That of Atomic Time Using σ_z(τ)[J]. Geomatics and Information Science of Wuhan University, 2012, 37(7): 847-850. |
[8] | MAO Yue, CHEN Jianpeng, DAI Wei, JIA Xiaolin. Analysis of On-board Atomic Clock Stability Influences[J]. Geomatics and Information Science of Wuhan University, 2011, 36(10): 1182-1186. |
[9] | GUO Hairong, YANG Yuanxi. Analyses of Main Error Sources on Time-Domain Frequency Stability for Atomic Clocks of Navigation Satellites[J]. Geomatics and Information Science of Wuhan University, 2009, 34(2): 218-221. |
[10] | Zhan Shaofeng. On Partial Extreme Stability[J]. Geomatics and Information Science of Wuhan University, 1990, 15(4): 85-90. |