Citation: | CAO Jianfeng, KONG Jing, MAN Haijun, JU Bing, ZHANG Yu, LIU Huicui. Onboard Ultra-Stable Oscillator Long-Term Drift Calibration for Tianwen-1 Mission[J]. Geomatics and Information Science of Wuhan University, 2024, 49(12): 2181-2186. DOI: 10.13203/j.whugis20220082 |
The stability of ultra-stable oscillator (USO) which provides frequency standard and transmits downlink signal affects the accuracy of one-way Doppler measurements directly. It is a necessity to estimate the frequency bias during orbit determination with one-way Doppler measurements.
First, the one-way Doppler observation model and observation partial derivative are deduced theoretically, and the main error sources affecting the accuracy are analyzed. Then, the frequency deviation is estimated and the USO long-term drift prediction model is constructed during the execution of Tianwen-1 precise orbit determination using the one-way Doppler measurements. Finally, the accuracy of frequency bias resolution is analyzed theoretically based on its key factors.
The USO drift rate is 0.075 75±0.006 20 Hz/d.
This paper provides a feasible frequency drift calibration method for space-borne USO, and it constructs a priori frequency model for space-borne USO of Tianwen-1.
[1] |
Shapira A, Stern A, Prazot S, et al. An Ultra Stable Oscillator for the 3GM Experiment of the JUICE Mission[C]//European Frequency and Time Forum (EFTF), York, United Kingdom, 2016.
|
[2] |
Lemoine F G, Goossens S, Sabaka T J, et al. High‒Degree Gravity Models from GRAIL Primary Mission Data[J]. Journal of Geophysical Research: Planets, 2013, 118(8): 1676-1698.
|
[3] |
杨鹏, 黄勇, 李培佳, 等. 同波束VLBI测量下的天问一号火星车定位及精度分析[J]. 武汉大学学报(信息科学版), 2023, 48(1): 84-91.
Yang Peng, Huang Yong, Li Peijia, et al. Positioning and Accuracy Analysis of Tianwen-1 Mars Rover Based on Same-Beam VLBI Measurement[J]. Geomatics and Information Science of Wuhan University, 2023, 48(1): 84-91.
|
[4] |
王波, 鄢建国, 高梧桐, 等. EOP预报误差对深空探测器精密定轨结果影响分析[J]. 武汉大学学报(信息科学版), 2024, 49(9): 1538-1545.
Wang Bo, Yan Jianguo, Gao Wutong, et al. Impact Analysis of EOP Prediction Errors on Orbit Determination of Deep-Space Spacecraft[J]. Geomatics and Information Science of Wuhan University, 2024, 49(9): 1538-1545.
|
[5] |
黄静, 赵薇薇, 陈雪华, 等. 单星测频静态目标无源定位研究[J]. 中国空间科学技术, 2019, 39(4): 11-17.
Huang Jing, Zhao Weiwei, Chen Xuehua, et al. Passive Positoning Algorithm Based on Single Satellite Frequency Measurement[J]. Chinese Space Science and Technology, 2019, 39(4): 11-17.
|
[6] |
Chao C C, Ondrasik V J, Siegel H L. A Demonstration of Differenced Dual-Station One-Way Doppler Conducted with Pioneer 11[J]. Deep Space Network Progress Report, 1978, 45: 104-110.
|
[7] |
王震, 简念川, 张素君, 等. YH-1星载超稳定晶振的频率稳定性的测试与分析[J]. 中国科学院上海天文台年刊, 2011, 32: 69-74.
Wang Zhen, Jian Nianchuan, Zhang Sujun, et al. Test and Analysis of Frequency Stability of USO in YH-1[J]. Annals of Shanghai Astronomical Observatory Chinese Academy of Sciences, 2011, 32: 69-74.
|
[8] |
胡松杰.萤火一号探测器定轨仿真分析[J].深空探测研究,2010,8(3):7-13.
Hu Songjie. Simulation Analysis of Orbit Determination of YH-1[J]. Deep Space Exploration, 2010, 8(3): 7-13.
|
[9] |
刘山洪, 鄢建国, 杨轩, 等. 天问一号拓展任务对火星低阶重力场解算的潜在贡献分析[J]. 武汉大学学报(信息科学版), 2023, 48(1): 58-64.
Liu Shanhong, Yan Jianguo, Yang Xuan, et al. Potential Contribution of Tianwen-1 Extended Mission to Mars Low-Order Gravity Field[J]. Geomatics and Information Science of Wuhan University, 2023, 48(1): 58-64.
|
[10] |
伍贻威, 杨斌, 肖胜红, 等. 原子钟模型和频率稳定度分析方法[J]. 武汉大学学报(信息科学版), 2019, 44(8): 1226-1232.
Wu Yiwei, Yang Bin, Xiao Shenghong, et al. Atomic Clock Models and Frequency Stability Analyses[J]. Geomatics and Information Science of Wuhan University, 2019, 44(8): 1226-1232.
|
[11] |
曹建峰, 黄勇, 胡小工, 等. 深空探测中多普勒的建模与应用[J]. 宇航学报, 2011, 32(7): 1583-1589.
Cao Jianfeng, Huang Yong, Hu Xiaogong, et al. Modeling and Application of Doppler Data in Deep Space Exploration[J]. Journal of Astronautics, 2011, 32(7): 1583-1589.
|
[12] |
Petit G, Luzum B. IERS Conventions(2010),IERS Technical Note No. 36[R]. Paderborn: Bonifatius GMBH, 2010.
|
[13] |
Moyer T D. Formulation for Observed and Computed Values of Deep Space Network Data Types for Navigation[M]. New York: Wiley, 2003.
|
[14] |
Bures K J, Smith G L. Theoretical Error Analysis of a Doppler Range-Rate and Phase-Modulated Range Tracking System,NASA-TN-D-4267[R]. San Francisco, CA, USA, 1967.
|
[15] |
Konopliv A S, Park R S, Folkner W M. An Improved JPL Mars Gravity Field and Orientation from Mars Orbiter and Lander Tracking Data[J]. Icarus, 2016, 274: 253-260.
|
[16] |
Folkner W M, Park R S, Jacobson R A. Planetary Ephemeris DE435,IOM 392R-16-003[R]. San Francisco, CA, USA, 2016.
|
[1] | ZHANG Wenting, JI Lingyun, CHEN Yuxin, LIU Chuanjin, XU Jing. Analysis of Crustal Deformation of the 2023 Ms 6.2 Jishishan Earthquake in Gansu Province, China[J]. Geomatics and Information Science of Wuhan University, 2025, 50(2): 391-403. DOI: 10.13203/j.whugis20240012 |
[2] | CHEN Peng, QIU Liangcai, YAO Yibin, ZHU Chengchang, LU Jierui, GUAN Xingyao, HONG Yang, SUN Shizheng. Surface Deformation and Hazard Analysis After the 2023 Ms 6.2 Earthquake in Jishishan, Gansu Province Based on InSAR and Optical Imagery Interpretation[J]. Geomatics and Information Science of Wuhan University, 2025, 50(2): 257-270. DOI: 10.13203/j.whugis20240074 |
[3] | WANG Yuexiang, WANG Teng. InSAR-Derived Coseismic Slip Model of the 2024 Ali Mw 5.6 Earthquake and Its Role on Landscape Evolution[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20240453 |
[4] | LIU Zhenjiang, HAN Bingquan, LIU Haihui, LI Zhenhong, NAI Yihan, CHEN Bo, PENG Jianbing. Seismogenic Fault and Building Damage of the 2023 Herat Earthquake Sequence Revelated by Radar Interferometry[J]. Geomatics and Information Science of Wuhan University, 2024, 49(5): 722-733. DOI: 10.13203/j.whugis20230382 |
[5] | YANG Mengshi, LIAO Mingsheng, CHANG Ling, HANSSEN Ramon F.. Interpretation of Multi-epoch InSAR Deformation for Urban Scenes: A Problem Analysis and Literature Review[J]. Geomatics and Information Science of Wuhan University, 2023, 48(10): 1643-1660. DOI: 10.13203/j.whugis20230289 |
[6] | HAN Bingquan, LIU Zhenjiang, CHEN Bo, LI Zhenhong, YU Chen, ZHANG Yong, PENG Jianbing. Coseismic Deformation and Slip Distribution of the 2022 Luding Mw 6.6 Earthquake Revealed by InSAR Observations[J]. Geomatics and Information Science of Wuhan University, 2023, 48(1): 36-46. DOI: 10.13203/j.whugis20220636 |
[7] | LIU Yang, XU Caijun, WEN Yangmao. InSAR Observation of Menyuan Mw5.9 Earthquake Deformation and Deep Geometry of Regional Fault Zone[J]. Geomatics and Information Science of Wuhan University, 2019, 44(7): 1035-1042. DOI: 10.13203/j.whugis20190069 |
[8] | ZHANGYi, LI Xiguang, ZHANG Xiong. Interpretation of Newly Youjiang Secondary Active Fault Mergedwith Multiple Remote Sensing Information[J]. Geomatics and Information Science of Wuhan University, 2015, 40(8): 1023-1028. DOI: 10.13203/j.whugis20130688 |
[9] | YANG Shaomin, NIE Zhaosheng, JIA Zhige, PENG Maolei. Far-field Coseismic Surface Displacement Caused by the Mw9.0 Tohoku Earthquake[J]. Geomatics and Information Science of Wuhan University, 2011, 36(11): 1336-1339. |
[10] | XU Caijun, JIANG Guoyan, WANG Hao, WEN Yangmao. Analyzing InSAR Results Using GIS and Its Application on the Coseismic Interpretation of Mw7.9 Wenchuan Earthquake[J]. Geomatics and Information Science of Wuhan University, 2011, 36(4): 379-383. |