CAO Jianfeng, KONG Jing, MAN Haijun, JU Bing, ZHANG Yu, LIU Huicui. Onboard Ultra-Stable Oscillator Long-Term Drift Calibration for Tianwen-1 Mission[J]. Geomatics and Information Science of Wuhan University, 2024, 49(12): 2181-2186. DOI: 10.13203/j.whugis20220082
Citation: CAO Jianfeng, KONG Jing, MAN Haijun, JU Bing, ZHANG Yu, LIU Huicui. Onboard Ultra-Stable Oscillator Long-Term Drift Calibration for Tianwen-1 Mission[J]. Geomatics and Information Science of Wuhan University, 2024, 49(12): 2181-2186. DOI: 10.13203/j.whugis20220082

Onboard Ultra-Stable Oscillator Long-Term Drift Calibration for Tianwen-1 Mission

More Information
  • Received Date: February 20, 2023
  • Available Online: October 20, 2022
  • Objectives 

    The stability of ultra-stable oscillator (USO) which provides frequency standard and transmits downlink signal affects the accuracy of one-way Doppler measurements directly. It is a necessity to estimate the frequency bias during orbit determination with one-way Doppler measurements.

    Methods 

    First, the one-way Doppler observation model and observation partial derivative are deduced theoretically, and the main error sources affecting the accuracy are analyzed. Then, the frequency deviation is estimated and the USO long-term drift prediction model is constructed during the execution of Tianwen-1 precise orbit determination using the one-way Doppler measurements. Finally, the accuracy of frequency bias resolution is analyzed theoretically based on its key factors.

    Results 

    The USO drift rate is 0.075 75±0.006 20 Hz/d.

    Conclusions 

    This paper provides a feasible frequency drift calibration method for space-borne USO, and it constructs a priori frequency model for space-borne USO of Tianwen-1.

  • [1]
    Shapira A, Stern A, Prazot S, et al. An Ultra Stable Oscillator for the 3GM Experiment of the JUICE Mission[C]//European Frequency and Time Forum (EFTF), York, United Kingdom, 2016.
    [2]
    Lemoine F G, Goossens S, Sabaka T J, et al. High‒Degree Gravity Models from GRAIL Primary Mission Data[J]. Journal of Geophysical Research: Planets, 2013, 118(8): 1676-1698.
    [3]
    杨鹏, 黄勇, 李培佳, 等. 同波束VLBI测量下的天问一号火星车定位及精度分析[J]. 武汉大学学报(信息科学版), 2023, 48(1): 84-91.

    Yang Peng, Huang Yong, Li Peijia, et al. Positioning and Accuracy Analysis of Tianwen-1 Mars Rover Based on Same-Beam VLBI Measurement[J]. Geomatics and Information Science of Wuhan University, 2023, 48(1): 84-91.
    [4]
    王波, 鄢建国, 高梧桐, 等. EOP预报误差对深空探测器精密定轨结果影响分析[J]. 武汉大学学报(信息科学版), 2024, 49(9): 1538-1545.

    Wang Bo, Yan Jianguo, Gao Wutong, et al. Impact Analysis of EOP Prediction Errors on Orbit Determination of Deep-Space Spacecraft[J]. Geomatics and Information Science of Wuhan University, 2024, 49(9): 1538-1545.
    [5]
    黄静, 赵薇薇, 陈雪华, 等. 单星测频静态目标无源定位研究[J]. 中国空间科学技术, 2019, 39(4): 11-17.

    Huang Jing, Zhao Weiwei, Chen Xuehua, et al. Passive Positoning Algorithm Based on Single Satellite Frequency Measurement[J]. Chinese Space Science and Technology, 2019, 39(4): 11-17.
    [6]
    Chao C C, Ondrasik V J, Siegel H L. A Demonstration of Differenced Dual-Station One-Way Doppler Conducted with Pioneer 11[J]. Deep Space Network Progress Report, 1978, 45: 104-110.
    [7]
    王震, 简念川, 张素君, 等. YH-1星载超稳定晶振的频率稳定性的测试与分析[J]. 中国科学院上海天文台年刊, 2011, 32: 69-74.

    Wang Zhen, Jian Nianchuan, Zhang Sujun, et al. Test and Analysis of Frequency Stability of USO in YH-1[J]. Annals of Shanghai Astronomical Observatory Chinese Academy of Sciences, 2011, 32: 69-74.
    [8]
    胡松杰.萤火一号探测器定轨仿真分析[J].深空探测研究,2010,8(3):7-13.

    Hu Songjie. Simulation Analysis of Orbit Determination of YH-1[J]. Deep Space Exploration, 2010, 8(3): 7-13.
    [9]
    刘山洪, 鄢建国, 杨轩, 等. 天问一号拓展任务对火星低阶重力场解算的潜在贡献分析[J]. 武汉大学学报(信息科学版), 2023, 48(1): 58-64.

    Liu Shanhong, Yan Jianguo, Yang Xuan, et al. Potential Contribution of Tianwen-1 Extended Mission to Mars Low-Order Gravity Field[J]. Geomatics and Information Science of Wuhan University, 2023, 48(1): 58-64.
    [10]
    伍贻威, 杨斌, 肖胜红, 等. 原子钟模型和频率稳定度分析方法[J]. 武汉大学学报(信息科学版), 2019, 44(8): 1226-1232.

    Wu Yiwei, Yang Bin, Xiao Shenghong, et al. Atomic Clock Models and Frequency Stability Analyses[J]. Geomatics and Information Science of Wuhan University, 2019, 44(8): 1226-1232.
    [11]
    曹建峰, 黄勇, 胡小工, 等. 深空探测中多普勒的建模与应用[J]. 宇航学报, 2011, 32(7): 1583-1589.

    Cao Jianfeng, Huang Yong, Hu Xiaogong, et al. Modeling and Application of Doppler Data in Deep Space Exploration[J]. Journal of Astronautics, 2011, 32(7): 1583-1589.
    [12]
    Petit G, Luzum B. IERS Conventions(2010),IERS Technical Note No. 36[R]. Paderborn: Bonifatius GMBH, 2010.
    [13]
    Moyer T D. Formulation for Observed and Computed Values of Deep Space Network Data Types for Navigation[M]. New York: Wiley, 2003.
    [14]
    Bures K J, Smith G L. Theoretical Error Analysis of a Doppler Range-Rate and Phase-Modulated Range Tracking System,NASA-TN-D-4267[R]. San Francisco, CA, USA, 1967.
    [15]
    Konopliv A S, Park R S, Folkner W M. An Improved JPL Mars Gravity Field and Orientation from Mars Orbiter and Lander Tracking Data[J]. Icarus, 2016, 274: 253-260.
    [16]
    Folkner W M, Park R S, Jacobson R A. Planetary Ephemeris DE435,IOM 392R-16-003[R]. San Francisco, CA, USA, 2016.
  • Related Articles

    [1]YANG Jiuyuan, WEN Yangmao, XU Caijun. Seismogenic Fault Structure of the 2023 Ms 6.2 Jishishan (Gansu,China) Earthquake Revealed by InSAR Observations[J]. Geomatics and Information Science of Wuhan University, 2025, 50(2): 313-321. DOI: 10.13203/j.whugis20230501
    [2]LIU Bin, ZHANG Li, GE Daqing, LI Man, ZHOU Xiaolong, GUO Zhaocheng, SHI Pengqing, ZHANG Ling, JIN Dingjian, WAN Xiangxing, WANG Yu, WANG Yan. Application of InSAR Monitoring Large Deformation of Landslides Using Lutan-1 Constellation[J]. Geomatics and Information Science of Wuhan University, 2024, 49(10): 1753-1762. DOI: 10.13203/j.whugis20230478
    [3]YANG Jiuyuan, WEN Yangmao, XU Caijun. Coseismic Rupture Behavior of the 2024 Nima (Tibet) MW 6.0 Earthquake Revealed by InSAR Observations[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20240243
    [4]MAO Hongfei, XIE Lei, JIANG Kun, SUN Kai, WANG Jiageng, XU Wenbin. Source Parameter Inversion of Moderate to Strong Earthquakes and Its Comparison with Earthquake Catalogs in Tibetan Plateau based on InSAR Observations[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20240124
    [5]XU Qiang, LU Huiyan, LI Weile, DONG Xiujun, GUO Chen. Types of Potential Landslide and Corresponding Identification Technologies[J]. Geomatics and Information Science of Wuhan University, 2022, 47(3): 377-387. DOI: 10.13203/j.whugis20210618
    [6]LIU Bin, GE Daqing, WANG Shanshan, LI Man, ZHANG Ling, WANG Yan, WU Qiong. Combining Application of TOPS and ScanSAR InSAR in Large-Scale Geohazards Identification[J]. Geomatics and Information Science of Wuhan University, 2020, 45(11): 1756-1762. DOI: 10.13203/j.whugis20200259
    [7]LIU Yang, XU Caijun, WEN Yangmao. InSAR Observation of Menyuan Mw5.9 Earthquake Deformation and Deep Geometry of Regional Fault Zone[J]. Geomatics and Information Science of Wuhan University, 2019, 44(7): 1035-1042. DOI: 10.13203/j.whugis20190069
    [8]CAO Haikun, ZHAO Lihua, ZHANG Qin, QU Wei, NIE Jianliang. Ascending and Descending Orbits InSAR-GPS Data Fusion Method with Additional Systematic Parameters for Three-Dimensional Deformation Field[J]. Geomatics and Information Science of Wuhan University, 2018, 43(9): 1362-1368. DOI: 10.13203/j.whugis20160461
    [9]Yue Xijuan, Han Chunming, Dou Changyong, Zhao Yinghui. Mathematical Model of Airborne InSAR Block Adjustment[J]. Geomatics and Information Science of Wuhan University, 2015, 40(1): 59-63.
    [10]WU Yunsun, LI Zhenhong, LIU Jingnan, XU Caijun. Atmospheric Correction Models for InSAR Measurements[J]. Geomatics and Information Science of Wuhan University, 2006, 31(10): 862-867.

Catalog

    Article views (797) PDF downloads (59) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return