ZHAN Wei, LI Fei, ZHU Shuang, ZHANG Jie. Analysis and Test of Correction to Vertical Velocity Measured by GPS Mobile Observation with Continuous Observation[J]. Geomatics and Information Science of Wuhan University, 2016, 41(7): 963-968. DOI: 10.13203/j.whugis20140251
Citation: ZHAN Wei, LI Fei, ZHU Shuang, ZHANG Jie. Analysis and Test of Correction to Vertical Velocity Measured by GPS Mobile Observation with Continuous Observation[J]. Geomatics and Information Science of Wuhan University, 2016, 41(7): 963-968. DOI: 10.13203/j.whugis20140251

Analysis and Test of Correction to Vertical Velocity Measured by GPS Mobile Observation with Continuous Observation

Funds: 

The Special Fund for China Earthquake Research Project No.201308009

the National Natural Science Foundation of China No.41474002

More Information
  • Received Date: May 28, 2014
  • Published Date: July 04, 2016
  • At present, the vertical velocities measured by GPS mobile observations have relatively low precision, which is due to the significant effect of seasonal motion and which cannot be overcome effectively given the insufficient data. A method to correct the results of mobile observations by using the information from GPS continuous observation in the same area is given in this study. Firstly, amplitudes of annual motion in GPS continuous stations were calculated. The amplitudes were used to obtain the amplitudes in mobile stations by using spatial interpolation method. With the results above, the vertical time-series of mobile GPS could be corrected to weaken the annual motion effect, so the vertical velocity results were acquired with improved precision. Two tests based on the continuous (from 2010 to 2013) and mobile observation (from 2011 to 2013) from tectonic and environmental observation network (hereinafter referred to as TEONET) in Yunnan area are proposed to prove its reliability. The results show that, in the area with a consistent spatial motion with an annual period, the method can correct the results of vertical velocity measured by GPS mobile observation effectively and improve the precision of velocity results.
  • [1]
    Wang Qi, Zhang Peizhen, Freymueller J T, et al. Present-day Crustal Deformation in China Constrained by Global Positioning System Measurements[J]. Science , 2001, 294(5 542):574-577
    [2]
    梁洪宝,占伟,杨博,等.新疆地区现今水平形变及其动态变化[J]. 大地测量与地球动力学, 2012, 32(6):24-28

    Liang Hongbao, Zhan Wei, Yang Bo, et al. Present-day Horizontal Deformation and Its Dynamic Character in Xinjiang Area[J]. Journal of Geodesy and Geodynamics , 2012, 32(6):24-3
    [3]
    武艳强,江在森,杨国华,等.南北地震带北段近期地壳变形特征研究[J]. 武汉大学学报·信息科学版, 2012, 37(9):1 045-1 049

    Wu Yanqiang, Jiang Zaisen,Yang Guohua,et al. Deformation Characteristics of North Section of North-south Seimic Zone in Recent Period[J]. Geomatics and Information Science of Wuhan University , 2012, 37(9):1 045-1 049
    [4]
    刘志广,占伟,杨博,等.青藏高原中南部近期地壳水平形变[J]. 大地测量与地球动力学, 2013, 33(3):1-4

    Liu Zhiguang, Zhan Wei, Yang Bo, et al. Recent Horizontal Crust Deformation in Central and Southern Qinghai-Tibet Plateau[J]. Journal of Geodesy and Geodynamics , 2013, 33(3):1-4
    [5]
    Wu Yanqiang, Jiang Zaiseng, Wang Ming, et al. Preliminary Results Pertaining to Coseismic Displacement and Preseismic Strain Accumulation of the Lushan MS7.0 Earthquake, as Reflected by GPS Surveying[J]. Chinese Science Bulletin , 2013, 58: 3 460-3 466
    [6]
    Liang Shiming, Gan Weijun, Shen Chunzheng, et al. Three-dimensional Velocity Field of Present-Day Crustal Motion of the Tibetan Plateau Derived from GPS Measurements[J]. Journal of Geophysical Research , 2013, 118(10):5 722-5 732
    [7]
    Meng Xiangang, Liu Zhiguang. The Ms7.0 Lushan Earthquake and the Activity of the Longmenshan Fault Zone[J]. Geodesy and Geodynamics , 2013, 4(3):40-47
    [8]
    Dong D N, Fang P, Bock Y, et al. Anatomy of Apparent Seasonal Variations from GPS-derived Site Position Time Series[J]. Journal of Geophysical Research , 2002, doi: 10.1029/2001JB000573
    [9]
    王敏,沈正康,董大南.非构造形变对GPS连续站位置时间序列的影响和修正[J].地球物理学报, 2005, 48(5):1 045-1 052

    Wang Min, Shen Zhengkang, Dong Danan. Effects of Non-Tectonic Crustal Deformation on Continuous GPS Position Time Series and Correction to Them[J]. Chinese J Geophys , 2005, 48 (5):1 045-1 052
    [10]
    Wdowinski S, Bock Y, Zhang J, et al.Southern California Permanent GPS Geodetic Array: Spatial Filtering of Daily Positions for Estimating Coseismic and Post Seismic Displacement Induced by the Landers Earthquake[J]. Journal of Geophysical Research , 1997, 102(B8):18 057-18 070
    [11]
    盛传贞,甘卫军,梁诗明,等. 滇西地区GPS时间序列中陆地水载荷形变干扰的GRACE分辨与剔除[J]. 地球物理学报, 2014, 57(1):42-52

    Sheng Chuanzhen, Gan Weijun, Liang Shiming, et al. Identification and Eliminationof Non-Tectonic Crustal Deformation Caused by Land Water from GPS Time Series in the Western Yunnan Province Based on GRACE Observations[J]. Chinese J Geophys , 2014, 57(1):42-52
    [12]
    Herring T A, King R W, McClusky S C.GAMIT Reference Manual: GPS Analysis at MIT, Version 10.4[R]. Massachusetts Institute of Technology, Cambridge, 2010
    [13]
    郝明.基于精密水准数据的青藏高原东缘现今地壳垂直运动与典型地震同震及震后垂直形变研究[D]. 北京:中国地震局地质研究所,2012

    Hao Ming. Present Crustal Vertical Movement of Eastern Tibetan Plateau and Coseismic and Postseimic Vertical Deformation of Two Typical Earthquakes[D]. Beijing: Institute of Geology, Chinese Earthquake Administration, 2012
    [14]
    郝明,王庆良,崔笃信,等.滇西南龙陵-澜沧断裂带现今地壳垂直运动研究[J]. 地震研究, 2013, 36(3):281-285

    Hao Ming, Wang Qingliang, Cui Duxin, et al. Present Crustal Vertical Movement of Longling-Lancang Fault in Southeast of Yunnan Province[J]. Journal of Seismological Research , 2013, 36(3):281-285
    [15]
    刘任莉,李建成,姜卫平,等. 联合GRACE与GPS比较山西省垂向地表形变[J]. 武汉大学学报·信息科学版,2013,38(4):426-430

    Liu Renli, Li Jiancheng, Jiang Weiping, et al. Comparing Vertical Surface Displacements Using GRACE and GPS over Shanxi Province[J]. Geomatics and Information Science of Wuhan University, 2013,38(4):426-430
    [16]
    Tesmer V, Steigenberger P, Dam T V, et al. Vertical Deformations from Homogeneously Processed GRACE and Global GPS Long-Term Series[J]. Journal of Geodesy, 2011, 85(5):291-310
    [17]
    Fu Y, Freymueller J T, Jens en T. Seasonal Hydrological Loading in Southern Alaska Observed by GPS and GRACE[J]. Geophysical Research Letters, 2012, 39(15):151-155
    [18]
    Zou Rong, Freymueller J T, Ding Kaihua, et al. Evaluating Seasonal Loading Models and Their Impact on Global and Regional Reference Frame Alignment[J]. Journal of Geophysical Research Solid Earth, 2014, 119(2):1 337-1 358
  • Related Articles

    [1]YU Daocheng, HWANG Jinway, ZHU Huizhong, LUO Jia, YUAN Jiajia. Enhancing Marine Gravity Field Precision Using SWOT Wideswath Altimetry Data: a Comparative Analysis with Traditional Altimetry Satellites[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20240120
    [2]HE Huiyou, FANG Jian. Gravity Anomaly Spectrum Analysis Method and Its Application[J]. Geomatics and Information Science of Wuhan University, 2023, 48(12): 2092-2102. DOI: 10.13203/j.whugis20200510
    [3]XING Zhibin, LI Shanshan, WANG Wei, FAN Haopeng. Fast Approach to Constructing Normal Equation During the Time of Calculating Height Anomaly Difference by Using Vertical Deflections[J]. Geomatics and Information Science of Wuhan University, 2016, 41(6): 778-783. DOI: 10.13203/j.whugis20140491
    [4]DU Jinsong, CHEN Chao, LIANG Qing, ZHANG Yi. Lunar Gravity Anomaly and Its Computational Method[J]. Geomatics and Information Science of Wuhan University, 2012, 37(11): 1369-1373.
    [5]LI Zhenhai, LUO Zhicai, WANG Haihong, ZHONG Bo. Requirements for Gravity Data Within the Given Accuracy of the Interpolated Gravity Anomaly[J]. Geomatics and Information Science of Wuhan University, 2011, 36(11): 1328-1331.
    [6]WU Yunsun, CHAO Dingbo, LI Jiancheng, WANG Zhengtao. Recovery of Ocean Depth Model of South China Sea from Altimetric Gravity Gradient Anomalies[J]. Geomatics and Information Science of Wuhan University, 2009, 34(12): 1423-1425.
    [7]WANG Haihong, NING Jinsheng, LUO Zhicai, LUO Jia. Separation of Gravity Anomalies Based on Multiscale Edges[J]. Geomatics and Information Science of Wuhan University, 2009, 34(1): 109-112.
    [8]CHAO Dingbo, YAO Yunsheng, LI Jiancheng, XU Jusheng. Interpretaion on the Tectonics and Characteristics of Altimeter-derived Gravity Anomalies in China South Sea[J]. Geomatics and Information Science of Wuhan University, 2002, 27(4): 343-347.
    [9]Huang Motao, Guan Zheng, Ouyang Yongzhong. Calculation and Accuracy Estimation of Marine Mean Free-Air Gravity Anomaly[J]. Geomatics and Information Science of Wuhan University, 1995, 20(4): 327-331.
    [10]Guan Zelin, E Dongchen. The Computation of Geoidal Undulation Deflection of Vertical and Gravity Anomalies Using Clenshaw Summation[J]. Geomatics and Information Science of Wuhan University, 1986, 11(4): 75-82.
  • Cited by

    Periodical cited type(10)

    1. 费婷婷,丁晓婷,阙翔,林津,林健,王紫薇,刘金福. 基于SBM-DEA与STWR模型的中国能源碳排放效率时空异质性分析. 环境工程. 2024(10): 188-200 .
    2. 熊景华,郭生练,王俊,尹家波,李娜. 长江流域陆地水储量变化及归因研究. 武汉大学学报(信息科学版). 2024(12): 2241-2248 .
    3. 姜栋,赵文吉,王艳慧,万碧玉. 地理加权回归的城市道路时空运行态势空间网格计算方法. 武汉大学学报(信息科学版). 2023(06): 988-996 .
    4. 倪杰,吴通华,赵林,李韧,谢昌卫,吴晓东,朱小凡,杜宜臻,杨成,郝君明. 环北极多年冻土区碳循环研究进展与展望. 冰川冻土. 2019(04): 845-857 .
    5. 刘大元,张雪梅,岳跃民,王克林,邹冬生. 基于Geodetector的广西喀斯特植被覆盖变化及其影响因素分析. 农业现代化研究. 2019(06): 1038-1047 .
    6. 肖屹,何宗宜,苗静,潘峰,杨好. 利用搜索引擎数据模拟疾病空间分布. 测绘通报. 2018(02): 94-98 .
    7. 苗月鲜,方秀琴,吴小君,吴陶樱. 基于GWR模型的江西省山洪灾害区域异同性研究. 水土保持通报. 2018(01): 313-318+327 .
    8. 陈吕凤,朱国平. 基于地理加权模型的南设得兰群岛北部南极磷虾渔场空间分布影响分析. 应用生态学报. 2018(03): 938-944 .
    9. 张雪梅,王克林,岳跃民,童晓伟,廖楚杰,张明阳,姜岩. 生态工程背景下西南喀斯特植被变化主导因素及其空间非平稳性. 生态学报. 2017(12): 4008-4018 .
    10. 陈广威,陈吕凤,朱国平,徐玉成,田靖寰,丁博. 南乔治亚岛冬季南极磷虾渔场时空分布及其驱动因子. 生态学杂志. 2017(10): 2803-2810 .

    Other cited types(10)

Catalog

    Article views PDF downloads Cited by(20)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return