Citation: | GU Haiyan, YAN Li, LI Haitao, JIA Ying. An Object-based Automatic Interpretation Method for Geographic Features Based on Random Forest Machine Learning[J]. Geomatics and Information Science of Wuhan University, 2016, 41(2): 228-234. DOI: 10.13203/j.whugis20140102 |
[1] |
Wiki. GEO-Object-Based Image Analysis[OL]. http://wiki.ucalgary.ca/page/GEOBIA,2015
|
[2] |
Hay G J, Castilla G. Object-based Image Analysis:Strengths, Weaknesses, Opportunities and Threats (SWOT)[C].The 1st International Conference on Object-based Image Analysis (OBIA), Salzburg, Austria, 2006
|
[3] |
Robertson L D, King D J. Comparison of Pixel-and Object-based Classification in Land-cover Change Mapping[J]. International Journal of Remote Sensing,2011,32(6):1505-1529
|
[4] |
Li Haitao, Gu Haiyan, Han Yanshun, et al. Object-oriented Classification of High-resolution Remote Sensing Imagery Based on an Improved Colour Structure Code and a Support Vector Machine[J]. International Journal of Remote Sensing,2010,31(6):1453-1470
|
[5] |
Blaschke T. Object Based Image Analysis for Remote Sensing[J]. ISPRS Journal of Photogrammetry and Remote Sensing,2010, 65:2-16
|
[6] |
Definiens Imaging GmbH. Developer 8 Reference Book; Definiens Imaging GmbH[OL]. http://www.doc88.com/p-0963997861736.html
|
[7] |
Baraldi A, Boschetti L. Operational Automatic Remote Sensing Image Understanding Systems:Beyond Geographic Object-based and Object-oriented Image Analysis (GEOBIA/GEOOIA). Part 1:Introduction[J]. Remote Sensing,2012,4:2694-2735
|
[8] |
Baraldi A, Boschetti L. Operational Automatic Remote Sensing Image Understanding Systems:Beyond Geographic Object-based and Object-oriented Image Analysis (GEOBIA/GEOOIA). Part 2:Novel System Architecture, Information/Knowledge Representation, Algorithm Design and Implementation[J]. Remote Sensing,2012,4:2768-2817
|
[9] |
Stumpf A, Kerle N. Object-oriented Mapping of Landslides Using Random Forests[J]. Remote Sensing of Environment,2011,115(10):2564-2577
|
[10] |
Breiman L, Cutler A. Random Forests[OL].http://www.stat.berkeley.edu/users/breiman/RandomForests/cc_home.htm,2015
|
[11] |
Breiman L. Random Forests[J]. Machine Learning, 2001,45(1):5-32
|
[12] |
Rodriguez-Galiano V F, Chica-Olmo M, Abarca-Hernandez F,et al. Random Forest Classification of Mediterranean Land Cover Using Multi-seasonal Imagery and Multi-seasonal Texture[J]. Remote Sensing of Environment,2012,121:93-107
|
[13] |
Guo L, Chehata N, Mallet C,et al. Relevance of Airborne LiDAR and Multispectral Image Data for Urban Scene Classification Using Random Forests[J].ISPRS Journal of Photogrammetry and Remote Sensing,2011,66(1):56-66
|
[14] |
Stumpf A, Kerle N. Combining Random Forests and Object-oriented Analysis for Landslide Mapping from very High Resolution Imagery[J].Procedia Environmental Sciences, 2011,3:123-129
|
[15] |
Liu Yi,Du Peijun,Zheng Hui,et al. Classification of China Small Satellite Remote Sensing Image Based on Random Forests[J].Science of Surveying and Mapping, 2012,37(4):194-196(刘毅,杜培军,郑辉,等.基于随机森林的国产小卫星遥感影像分类研究[J].测绘科学,2012,37(4):194-196)
|
[16] |
Lei Zhen. Random Forest and Its Application in Remote Sensing[D].Shanghai:Shanghai Jiao Tong University,2012(雷震. 随机森林及其在遥感影像处理中应用研究[D].上海:上海交通大学, 2012)
|
[17] |
Li Haitao, Gu Haiyan, Han Yanshun, et al. An Efficient Multi-scale SRMMHR (Statistical Region Merging and Minimum Heterogeneity Rule) Segmentation Method for High-resolution Remote Sensing Imagery[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2009,2(2):67-73
|
[18] |
Verikas A, Gelzinis A, Bacauskiene M. Mining Data with Random Forests:A Survey and Results of New Tests[J].Pattern Recognition, 2011,44(2):330-349
|
[19] |
OpenCV Documentation.OpenCV 2.4.6 Online Documentation[OL].http://docs.opencv.org/modules/ml/doc/random_trees.html,2015
|
[20] |
Huang C, Davis L S, Townshend J R G. An Assessment of Support Vector Machines for Land Cover Classification[J]. International Journal of Remote Sensing,2002,23(4):725-749
|
[21] |
Pal M. Random Forest Classifier for Remote Sensing Classification[J]. International Journal of Remote Sensing, 2005,26(1):217-222
|
[1] | LI Deren, YU Hanruo, LI Xi. The Spatial-Temporal Pattern Analysis of City Development in Countries along the Belt and Road Initiative Based on Nighttime Light Data[J]. Geomatics and Information Science of Wuhan University, 2017, 42(6): 711-720. DOI: 10.13203/j.whugis20170100 |
[2] | lv fenghua, shu ning, gong yan, guo qing, shang haixing. adaptive mean shift based image se gmentation al gorithm[J]. Geomatics and Information Science of Wuhan University, 2014, 39(7): 850-855. |
[3] | HU Hai, WU Yanlan, HU Peng. Discussion of DEM Standards,Quality Theory and Conceptions[J]. Geomatics and Information Science of Wuhan University, 2011, 36(6): 713-716. |
[4] | WU Xincai, LIU Fujiang. Standard System of Data Center Application Integrated Platform[J]. Geomatics and Information Science of Wuhan University, 2011, 36(5): 519-522. |
[5] | ZHANG Guoqin, ZHU Changqing, LI Guozhong. A Positional Uncertainty ε_E Model for Line Segment Considering Error Ellipse Long Semi-axis as Error Band Width[J]. Geomatics and Information Science of Wuhan University, 2010, 35(4): 495-499. |
[6] | MA Shengnan, WEI Hong, LIU Bisong. Review and Consideration of Progress in Geographic Information Standardization at Home and Abroad[J]. Geomatics and Information Science of Wuhan University, 2008, 33(9): 886-891. |
[7] | ZHOU Xinzhong, MENG Lingkui, WANG Yongjie, GUO Pengfei. Developing Metadata Standard for Geospatial Information with Object-Oriented Method[J]. Geomatics and Information Science of Wuhan University, 2007, 32(6): 477-480. |
[8] | WANG Lijie, ZHU Yuanhong, ZHANG Xuliang. Experiment and Measurement for Acquiring Solid Standards of Four Colors Metal Printing[J]. Geomatics and Information Science of Wuhan University, 2005, 30(10): 936-939. |
[9] | ZHU Qing, CHEN Songlin, HUANG Duo. Key Issues on Quality Standardization of Geospatial Data[J]. Geomatics and Information Science of Wuhan University, 2004, 29(10): 863-867. |
[10] | Yu Xuexiang, Lu Weicai. Robust Estimation Model for Correlated Observations Based on Standardized Residuals[J]. Geomatics and Information Science of Wuhan University, 1999, 24(1): 75-78. |