HU Changjiang, LI Yingbing. Dynamic Error and Parallel Signal Error in GNSS-R Spaceborne Altimetry[J]. Geomatics and Information Science of Wuhan University, 2015, 40(12): 1695-1700. DOI: 10.13203/j.whugis20130819
Citation: HU Changjiang, LI Yingbing. Dynamic Error and Parallel Signal Error in GNSS-R Spaceborne Altimetry[J]. Geomatics and Information Science of Wuhan University, 2015, 40(12): 1695-1700. DOI: 10.13203/j.whugis20130819

Dynamic Error and Parallel Signal Error in GNSS-R Spaceborne Altimetry

Funds: The National Natural Science Foundation of China, No. 41474006.
More Information
  • Received Date: October 08, 2014
  • Published Date: December 04, 2015
  • Based on the present geometry delay models of GNSS-R (global navigation satellite systems reflectometry) spaceborne altimetry, dynamic error and parallel signal error are studied. Apart from analyzing the reasons causing these two errors, this paper gives the analytical expressions of both errors. In order to obtain the magnitudes of dynamic error and parallel signal error, this paper first utilizes a segment of actual experimental data from the satellites of UK-DMC (united kingdom disaster monitor constellation) to test the magnitudes of dynamic error and parallel error, getting both errors of this set of data. Furthermore, regarding CHAMP (challenging mini-satellite payload) and COSMIC (constellation observing system for meteorology, ionosphere and climate) satellites as the platforms of receivers, a host of simulated data are used to detect the magnitudes of both errors. The conclusion that these two errors can be as great as the meter level, which cannot be ignored in altimetry, is reached after considering the results of two kinds of experiments. Finally, a solution of using the precise orbits information of transmitter and receiver to adjust dynamic error and parallel signal error is proposed.
  • [1]
    Martin-Neira. A Passive Reflectometry and Interferometry System(PARIS): Application to Ocean Altimetry[J]. ESA Journal, 1993, 17:331-355
    [2]
    Shao Lianjun, Zhang Xunxie, Wang Xin, et al. Sea Surface Wave Height Retrieve Using GNSS-R Signals[J]. Geomatics and Information Science of Wuhan University, 2008, 33 (5): 475-478(邵连军, 张训械, 王鑫, 等. 利用GNSS-R信号反演海波浪高[J]. 武汉大学学报·5信息科学报, 2008, 33 (5): 475-478)
    [3]
    Liu Jingnan, Shao Lianjun, Zhang Xunxie. Advance in GNSS-R Studies and Key Technologies[J]. Geomatics and Information Science of Wuhan University, 2007, 32 (11): 955-960(刘经南, 邵连军,张训械. GNSS-R研究进展及其关键技术[J]. 武汉大学学报·5信息科学报, 2007, 32 (11): 955-960)
    [4]
    Wagner C, Klokocnik J. The Value of Ocean Reflections of GPS Signals to Enhance Satellite Altimetry: Data Distribution and Error Analysis[J]. Journal of Geodesy, 2003, 77:128-138
    [5]
    Kostelecky J, Klokoník J, Wagner C A. Geometry and Accuracy of Reflecting Points in Bistatic Satellite Altimetry[J].Journal of Geodesy, 2005, 79(8): 421-430
    [6]
    Valencia E, Camps A, Park H, et al. Impact of the Observation Geometry on the GNSS-R Direct Descriptors Used for Sea State Monitoring[C]. Geoscience and Remote Sensing Symposium (IGARSS), Munich, Germany, 2012
    [7]
    George A H, Cinzia Z. Theoretical Description of a Bistatic System for Ocean Altimetry Using the GPS Signal[J]. Radio Science, 2003, 38 (5):1-10
    [8]
    Yang Dongkai, Zhang Qishan. GNSS Reflected Signal Processing: Fundamentals and Applications[M].Beijing: Electronic Industry Press,2012(杨东凯,张其善. GNSS反射信号处理基础与实践[M].北京:电子工业出版社,2012)
    [9]
    Semmling A M, Schmidt T,Wickert J, et al. On the Retrieval of the Specular Reflection in GNSS Carrier Observations for Ocean Altimetry [J]. Radio Science, 2012, 47: RS6007, doi: 10.1029/2012RS005007
  • Related Articles

    [1]ZHANG Fan, CHAI Hongzhou, WANG Min, XIAO Guorui, ZHANG Qiankun, DU Zhenqiang. Undifferenced and Uncombined PPP Ambiguity Resolution Combined with GPS/GLONASS Triple-Frequency Observations[J]. Geomatics and Information Science of Wuhan University, 2024, 49(10): 1900-1910. DOI: 10.13203/j.whugis20220315
    [2]SONG Weiwei, SONG Qisheng, HE Qianqian, GONG Xiaopeng, GU Shengfeng. Analysis of PPP-B2b Positioning Performance Enhanced by High-Precision Ionospheric Products[J]. Geomatics and Information Science of Wuhan University, 2024, 49(9): 1517-1526. DOI: 10.13203/j.whugis20230030
    [3]SONG Weiwei, ZHAO Xinke, LOU Yidong, SUN Weibin, ZHAO Zhengyu. Performance Evaluation of BDS-3 PPP-B2b Service[J]. Geomatics and Information Science of Wuhan University, 2023, 48(3): 408-415. DOI: 10.13203/j.whugis20200686
    [4]YAN Zhongbao, ZHANG Xiaohong. Partial Ambiguity Resolution Method and Results Analysis for GNSS Uncombined PPP[J]. Geomatics and Information Science of Wuhan University, 2022, 47(6): 979-989. DOI: 10.13203/j.whugis20220025
    [5]GU Shengfeng, DAI Chunqi, HE Chengpeng, FANG Lizhe, WANG Zihao. Analysis of Semi-tightly Coupled Multi-GNSS PPP-RTK/VIO for Vehicle Navigation in Urban Areas[J]. Geomatics and Information Science of Wuhan University, 2021, 46(12): 1852-1861. DOI: 10.13203/j.whugis20210615
    [6]YAO Yibin, FENG Xinying, PENG Wenjie, LIU Lei. Local Atmosphere Augmentation Based on CORS for Real-Time PPP[J]. Geomatics and Information Science of Wuhan University, 2019, 44(12): 1739-1748. DOI: 10.13203/j.whugis20180131
    [7]SONG Chao, HAO Jinming. Instantaneous Re-convergence of Kinematic PPP by the Use of Relationship Between Multiple Receiver Ambiguity[J]. Geomatics and Information Science of Wuhan University, 2017, 42(5): 595-599, 690. DOI: 10.13203/j.whugis20140747
    [8]GUO Fei, ZHANG Xiaohong. Processing Capacity for GPS Data with Clock Slip Using Online PPP Services[J]. Geomatics and Information Science of Wuhan University, 2012, 37(11): 1333-1336.
    [9]TU Rui, HUANG Guanwen, ZHANG Qin, WANG Li. The Research of Dual Frequency Solution Method for Single Frequency Precise Point Positioning(PPP) Based on SEID Model[J]. Geomatics and Information Science of Wuhan University, 2011, 36(10): 1187-1190.
    [10]ZHAO Jianhu, WANG Shengping, ZHANG Hongmei, WEN Weidong. Long-Distance and On-the-Fly GPS Tidal Level Measurement Based on GPS PPK/PPP[J]. Geomatics and Information Science of Wuhan University, 2008, 33(9): 910-913.
  • Cited by

    Periodical cited type(13)

    1. 冯晓亮,陈欢,李厚芝. 不同观测环境中的多模GNSS数据质量自动化检测方法. 测绘工程. 2024(06): 56-61 .
    2. 刘嘉伟,孙保琪,韩蕊,张喆,王侃,袁海波,杨旭海. GNSS多系统RTK授时性能分析. 导航定位与授时. 2023(03): 49-58 .
    3. 王浩浩,郝明,庄文泉. GNSS实时卫星钟差估计在地震监测中的应用. 导航定位与授时. 2023(03): 108-116 .
    4. 周长江,余海锋,王林伟,雷云平,岳彩亚. 无频间钟偏差改正的BDS-2三频非组合PPP随机模型优化. 测绘通报. 2023(12): 164-168 .
    5. 潘丽静,刘翔,夏川茹,王雷雷. GNSS精密卫星钟差实时估计与分析. 城市勘测. 2021(06): 73-76 .
    6. 郭磊,王甫红,桑吉章,张万威. 一种新的利用历元间位置变化量约束的GNSS导航算法. 武汉大学学报(信息科学版). 2020(01): 21-27 .
    7. 陶钧,张柔. GPS/BeiDou/Galileo/GLONASS实时精密卫星钟差估计. 测绘地理信息. 2020(03): 102-106 .
    8. 黄观文,王浩浩,谢威,曹钰. GNSS实时卫星钟差估计技术进展. 导航定位与授时. 2020(05): 1-9 .
    9. 张浩,赵兴旺,陈佩文,谢毅. GPS/BDS卫星钟差融合解算模型及精度分析. 合肥工业大学学报(自然科学版). 2020(09): 1192-1196 .
    10. 叶珍,李浩军. GNSS卫星钟差估计与结果分析. 导航定位与授时. 2019(03): 88-94 .
    11. 盛剑锋,张彩红,谭凯. 一种全球导航卫星系统钟差估计优化方案的量化研究. 科学技术与工程. 2019(14): 14-21 .
    12. 王尔申,赵珩,曲萍萍,庞涛,孙军. 基于拉格朗日插值法的卫星导航空间信号精度评估算法. 沈阳航空航天大学学报. 2019(04): 43-48 .
    13. 李云,崔文刚. 精密单点定位技术发展及应用. 科学技术与工程. 2019(27): 1-11 .

    Other cited types(10)

Catalog

    Article views PDF downloads Cited by(23)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return