GONG Xianyong, WU Fang, JI Cunwei, ZHAI Renjian. Ant Colony Optimization Approach to Road Network Matching[J]. Geomatics and Information Science of Wuhan University, 2014, 39(2): 191-195. DOI: 10.13203/j.whugis20120649
Citation: GONG Xianyong, WU Fang, JI Cunwei, ZHAI Renjian. Ant Colony Optimization Approach to Road Network Matching[J]. Geomatics and Information Science of Wuhan University, 2014, 39(2): 191-195. DOI: 10.13203/j.whugis20120649

Ant Colony Optimization Approach to Road Network Matching

Funds: The National Natural Science Foundation of China,Nos.41171354,41101362,41171305;the State Key Laboratoryof Geo-information Engineering Foundation,No.SKLGIE2013-M-4-6.
More Information
  • Author Bio:

    GONG Xianyong,postgraduate,specializes in pattern recognition,automated cartography generalization and spatio-temporaldata analysis.

  • Received Date: May 28, 2013
  • Revised Date: February 04, 2014
  • Published Date: February 04, 2014
  • Objective Corresponding feature matching,essentially as a matter of global combinatorial optimiza-tion,is one of the key technologies for geospatial data integration,fusion and update.In this paper,aglobal optimum matching solution is achieved taking the advantages of ant colony optimization groupsand random search,without the centralized control and global model.The basic principle of ant colonyoptimization for road network matching is explained first,with a mathematical constraint model con-sidering both geometric error and structural characteristics.Then,the matching problem solutionmodel is designed,with a self-adaptation and local search strategy employed to improve efficiency.Fi-nally,the key steps are given.Experiments show that the ant colony optimization approach is effec-tive,feasible and practical,providing a new idea for road network matching.
  • Related Articles

    [1]Gan Wenxia, Pan Junjie, Geng Jing, Wang Huini, Hu Xiaodi. A Fusion Method for Infrared and Visible Images in All-weather Road Scenes[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20240173
    [2]SONG Zhina, SUI Haigang, LI Yongcheng. A Survey on Ship Detection Technology in High-Resolution Optical Remote Sensing Images[J]. Geomatics and Information Science of Wuhan University, 2021, 46(11): 1703-1715. DOI: 10.13203/j.whugis20200481
    [3]XIANG Tianzhu, GAO Rongrong, YAN Li, XU Zhenliang. Region Feature Based Multi-scale Fusion Method for Thermal Infrared and Visible Images[J]. Geomatics and Information Science of Wuhan University, 2017, 42(7): 911-917. DOI: 10.13203/j.whugis20141007
    [4]ZHANG Lifu, YANG Hang, FANG Conghui, PAN Mao. Thermal Infrared Target Recognition Using Multi-scale Fractal Model[J]. Geomatics and Information Science of Wuhan University, 2012, 37(3): 339-342.
    [5]YING Shen, LI Lin, GAO Yurong. Pedestrian Simulation in Urban Space Based on Visibility Analysis and Agent Techniques[J]. Geomatics and Information Science of Wuhan University, 2011, 36(11): 1367-1370.
    [6]XU Hanqiu, ZHANG Tiejun, LI Chunhua. Cross Comparison of Thermal Infrared Data Between ASTER and Landsat ETM~+ Sensors[J]. Geomatics and Information Science of Wuhan University, 2011, 36(8): 936-940.
    [7]ZHU Zhongmin, GONG Wei, YU Juan, TIAN Liqiao. Applicability Analysis of Transformation Models for Aerosol Optical Depth and Horizontal Visibility[J]. Geomatics and Information Science of Wuhan University, 2010, 35(9): 1086-1090.
    [8]MAO Yue, SONG Xiaoyong, FENG Laiping. Visibility Analysis of X-ray Pulsar Navigation[J]. Geomatics and Information Science of Wuhan University, 2009, 34(2): 222-225.
    [9]YANG Guijun, LIU Qinhuo, LIU Qiang, GU Xingfa. Fusion of Visible and Thermal Infrared Remote Sensing Data Based on GA-SOFM Neural Network[J]. Geomatics and Information Science of Wuhan University, 2007, 32(9): 786-790.
    [10]GONG Shengrong, YANG Shanchao. A Visible Watermarking Algorithm Holding Image Content[J]. Geomatics and Information Science of Wuhan University, 2006, 31(9): 757-760.
  • Cited by

    Periodical cited type(2)

    1. 徐辛超,高阳. 融合跳跃连接网络与双重注意力机制的可见光与红外遥感影像匹配方法. 地球信息科学学报. 2025(03): 766-783 .
    2. 姚国标,张成成,龚健雅,张现军,李兵. 非线性尺度空间改进的光学与SAR影像自动配准. 武汉大学学报(信息科学版). 2024(12): 2249-2260 .

    Other cited types(0)

Catalog

    Article views PDF downloads Cited by(2)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return