XU Chuang, LUO Zhicai, WANG Haihong, NING Jinsheng. Inverting Underground Fault Parameters of Shenzhenfrom Profile Gravimetry Data[J]. Geomatics and Information Science of Wuhan University, 2014, 39(4): 435-440. DOI: 10.13203/j.whugis20120163
Citation: XU Chuang, LUO Zhicai, WANG Haihong, NING Jinsheng. Inverting Underground Fault Parameters of Shenzhenfrom Profile Gravimetry Data[J]. Geomatics and Information Science of Wuhan University, 2014, 39(4): 435-440. DOI: 10.13203/j.whugis20120163

Inverting Underground Fault Parameters of Shenzhenfrom Profile Gravimetry Data

Funds: The National Key Scientific Instrument and Equipment Development Projects,No.2012YQ10022507;the NationalNatural Science Foundation of China,No.41174020;the Open Research Fund Program of Key Laboratory of Geospace Environment andGeodesy,Ministry of Education,No.11-02-08.
More Information
  • Author Bio:

    XU Chuang,PhD candidate.He is engaged in the research on gravitational inversion.

  • Received Date: March 03, 2013
  • Revised Date: April 04, 2014
  • Published Date: April 04, 2014
  • Objective It is great significance for construction planning,seismic fortification and sustainable devel-opment to determine the fault parameters of Shenzhen.The parameters of faults under two surveylines in Shenzhen are inverted by a human-computer interaction method in this paper.The resultsshow that:firstly The relative errors between a forward model and observations of two survey linesare 4.51% and 4.26%,and the computed results are reliable;secondly The range of faults is aboutfrom 4km to 17km and normal faults with 70degree dip angles approximately;finally The locations offaults may be correlated with the topography in Shenzhen.The results are in accordance with othergeological,exploratory and geophysical data.Our results show that profile gravimetry data is feasiblefor inverting fault parameters in Shenzhen.
  • Related Articles

    [1]JI Kunpu, SHEN Yunzhong, CHEN Qiujie. An Adaptive Regularized Filtering Approach for Processing GRACE Time-Variable Gravity Field Models[J]. Geomatics and Information Science of Wuhan University, 2024, 49(11): 2101-2112. DOI: 10.13203/j.whugis20240316
    [2]LIU Meng, WANG Zheng-tao. Downward Continuation Iterative Regularization Solution Based on Quasi Optimal Regularization Factor Set[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20230127
    [3]WU Fengfeng, HUANG Haijun, REN Qingyang, FAN Wenyou, CHEN Jie, PAN Xiong. Analysis of Downward Continuation Model of Airborne Gravity Based on Comprehensive Semi-parametric Kernel Estimation and Regularization Method[J]. Geomatics and Information Science of Wuhan University, 2020, 45(10): 1563-1569. DOI: 10.13203/j.whugis20180491
    [4]XU Xinqiang, ZHAO Jun. A Multi-Parameter Regularization Method in Downward Continuation for Airborne Gravity Data[J]. Geomatics and Information Science of Wuhan University, 2020, 45(7): 956-963, 973. DOI: 10.13203/j.whugis20180335
    [5]JI Kunpu, SHEN Yunzhong. Unbiased Estimation of Unit Weight Variance by TSVD Regularization[J]. Geomatics and Information Science of Wuhan University, 2020, 45(4): 626-632. DOI: 10.13203/j.whugis20180270
    [6]SUN Wen, WU Xiaoping, WANG Qingbin, LIU Xiaogang, ZHU Zhida. Normalized Collocation Based on Variance Component Estimate and Its Application in Multi-source Gravity Data Fusion[J]. Geomatics and Information Science of Wuhan University, 2016, 41(8): 1087-1092. DOI: 10.13203/j.whugis20140159
    [7]ZENG Xiaoniu, LI Xihai, LIU Zhigang, YANG Xiaojun, LIU Daizhi. Regularization Method for Reduction to the Pole and Components Transformation of Magnetic Anomaly at Low Latitudes[J]. Geomatics and Information Science of Wuhan University, 2016, 41(3): 388-394. DOI: 10.13203/j.whugis20140342
    [8]GU Yongwei, GUI Qingming, HAN Songhui, WANG Jinhui. Regularization by Grouping Correction in Downward Continuation of Airborne Gravity[J]. Geomatics and Information Science of Wuhan University, 2013, 38(6): 720-724.
    [9]GU Yongwei, GUI Qingming, BIAN Shaofeng, GUO Jianfeng. Comparison Between Tikhonov Regularization and Truncated SVD in Geophysics[J]. Geomatics and Information Science of Wuhan University, 2005, 30(3): 238-241.
    [10]XU Tianhe, YANG Yuanxi. Robust Tikhonov Regularization Method and Its Applications[J]. Geomatics and Information Science of Wuhan University, 2003, 28(6): 719-722.
  • Cited by

    Periodical cited type(5)

    1. 穆庆禄,王长青,闫易浩,钟敏,冯伟,梁磊,朱紫彤. 不同指向模式下星载冷原子梯度仪对重力场解算精度的影响. 地球物理学报. 2024(07): 2528-2545 .
    2. 刘滔,钟波,李贤炮,谭江涛. GOCE卫星重力梯度数据反演重力场的滤波器设计与比较分析. 武汉大学学报(信息科学版). 2023(05): 694-701 .
    3. 朱广彬,常晓涛,瞿庆亮,周苗. 利用卫星引力梯度确定地球重力场的张量不变方法研究. 武汉大学学报(信息科学版). 2022(03): 334-340 .
    4. 罗志才,钟波,周浩,吴云龙. 利用卫星重力测量确定地球重力场模型的进展. 武汉大学学报(信息科学版). 2022(10): 1713-1727 .
    5. 陈鑑华,张兴福,陈秋杰,梁建青,沈云中. 融合GOCE和GRACE卫星数据的无约束重力场模型Tongji-GOGR2019S. 地球物理学报. 2020(09): 3251-3262 .

    Other cited types(1)

Catalog

    Article views (1255) PDF downloads (977) Cited by(6)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return