YING Shen, MAO Zhengyuan, LI Lin, XU Guang. Point Cloud Segmentation of 3D Rabbit Base 3D Voronoi[J]. Geomatics and Information Science of Wuhan University, 2013, 38(3): 358-361.
Citation: YING Shen, MAO Zhengyuan, LI Lin, XU Guang. Point Cloud Segmentation of 3D Rabbit Base 3D Voronoi[J]. Geomatics and Information Science of Wuhan University, 2013, 38(3): 358-361.

Point Cloud Segmentation of 3D Rabbit Base 3D Voronoi

More Information
  • Received Date: December 14, 2012
  • Published Date: March 04, 2013
  • 3D point pattern of cluster analysis is presented based on 3D Voronoi. 3D Voronoi cell is used to represent the spatial region that the spatial point effects. Through a quantitative description of the spatial parameters about 3D Voronoi cell there exists the potential to distinguish the weight and effective quantity of each point in the 3D space. Spatial neighborhood relationship among points is extracted according to 3D Voronoi cells to delimit the candidate points that will be clustered. The method illustrates segmentation and cluster distribution of 3D points based on the underlying density and spatial relationships, and actual analysis is imposed on the point cloud of 3D rabbit (Bunny). The ability to make quantitative description of each 3D Voronoi cell gives insights into spatial controls and cluster process on 3D points.
  • [1]
    应申,李霖,王明常,等. 计算几何在制图综合中的应用[J]. 测绘科学,2005,30(3):64\|66
    [2]
    Elyiv A, Melnyk O,Vavilova I. High\|order 3D Voronoi Tessellation for Identifying Isolated Galaxies, Pairs and Triplets[J]. Monthly Notices of the Royal Astronomical Society, 2009, 394(3):1 409\|1 418
    [3]
    Gatrell A C, Bailey T C. Diggle P J, et al. Spatial Point Pattern Analysis and Its Application in Geographical Epidemiology[J]. Transactions of the Institute of British Geographers, 1996, 21: 256\|274
    [4]
    Van der Putte T, Ledoux H. Modelling Three\|dimensional Geoscientific Datasets with the Discrete Voronoi Diagram[C]/Kolbe T H, Kning G, Nagel C. Advances in 3D Geo\|Information Sciences, Berlin:Springer\|Verlag, 2011
    [5]
    Bertin E, Parazza F, Chassery J M. Segmentation and Measurement Based on 3D Voronoi Diagram: Application to Confocal Microscopy[J]. Computerized Medical Imaging and Graphics, 1993,17(3):175\|182
    [6]
    Dupuis F,Sadoc J F, Jullien R, et al.Voro3D:3D Voronoi Tessellations Applied to Protein Structures[J]. Bioinformatics, 2005, 21:1 715\|1 716
    [7]
    Lopreore C L, Bartol T M, Coggan J S, et al. Computational Modeling of Three\|dimensional Electrodiffusion in Biological Systems: Application to the Node of Ranvier[J]. Biophysical Journal, 2008, 95(6):2 624\|2 635
    [8]
    卢子兴,王建月.壁面厚度随机度对闭孔Voronoi泡沫材料弹性性能的影响[J].航空动力学报, 2010,25(3):592\|596
    [9]
    Asahina D, Bolander J E. Voronoi\|Based Discretizations for Fracture Analysis of Particulate Materials[J]. Powder Technology, 2011,213:92\|99
    [10]
    Preparata F P, Hong S J. Convex Hulls of Finite Sets of Points in Two and Three Dimensions[J]. Communications of the ACM, 1977,20(2):87\|93
    [11]
    Fortune S. A Sweepline Algorithm for Voronoi Diagrams[J]. Algorithmica, 1987, 2:153\|174
    [12]
    刘雪娜.三维点集 Voronoi 图的算法实现[J].计算机辅助工程,2006,15(1):1\|4
    [13]
    孙殿柱,刘健,李延瑞,等.三维散乱点集Voronoi图快速生成算法研究[J].武汉大学学报·信息科学版,2010,35(8):909\|912
    [14]
    李光强,邓敏,朱建军.基于Voronoi图的空间关联规则挖掘方法研究[J]. 武汉大学学报·信息科学版,2008,33(12):1 242\|1 245
    [15]
    孙殿柱,刘健,李延瑞,等.三维散乱点云的Voronoi拓扑近邻点集查询算法[J].武汉大学学报·信息科学版,2011,36(1):86\|90
    [16]
    闫超德,白建军,赵仁亮.基于Voronoi图的点状目标邻近空间分布测度方法[J]. 武汉大学学报·信息科学版,2009,34(1):48\|51
  • Related Articles

    [1]MA Tian-en, LIU Tao, DU Ping, CHEN Po-yi, LING Zhen-fei. A 3D Point Cloud Semantic Segmentation Method for Aggregating Global Context Information[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20230143
    [2]XIANG Xueyong, LI Guangyun, WANG Li, ZONG Wenpeng, LÜ Zhipeng, XIANG Fengzhuo. Semantic Segmentation of Point Clouds Using Local Geometric Features and Dilated Neighborhoods[J]. Geomatics and Information Science of Wuhan University, 2023, 48(4): 534-541. DOI: 10.13203/j.whugis20200567
    [3]YANG Yuqi, CHEN Chi, YANG Bisheng, HU Pingbo, CUI Yang. 3D Change Detection of Buildings Based on Multi-level Segmentation of Dense Matching Point Clouds from UAV Images[J]. Geomatics and Information Science of Wuhan University, 2021, 46(4): 489-496. DOI: 10.13203/j.whugis20190030
    [4]JIANG Tengping, YANG Bisheng, ZHOU Yuzhou, ZHU Runsong, HU Zongtian, DONG Zhen. Bilevel Convolutional Neural Networks for 3D Semantic Segmentation Using Large-scale LiDAR Point Clouds in Complex Environments[J]. Geomatics and Information Science of Wuhan University, 2020, 45(12): 1942-1948. DOI: 10.13203/j.whugis20200081
    [5]ZHANG Ruiju, ZHOU Xin, ZHAO Jianghong, CAO Min. A Semantic Segmentation Algorithm of Ancient Building's Point Cloud Data[J]. Geomatics and Information Science of Wuhan University, 2020, 45(5): 753-759. DOI: 10.13203/j.whugis20180428
    [6]YAN Li, XIE Hong, HU Xiaobin, BAO Xiuwu. A New Hybrid Plane Segmentation Approach of Point Cloud[J]. Geomatics and Information Science of Wuhan University, 2013, 38(5): 517-521.
    [7]HU Ju, YANG Liao, SHEN Jinxiang, WU Xiaobo. Filtering of LiDAR Based on Segmentation[J]. Geomatics and Information Science of Wuhan University, 2012, 37(3): 318-321.
    [8]ZHAN Qingming ZHOU Xingang, XIAO Yinghui, YU Liang, . 对古建筑激光扫描点云进行分割、识别,并利用Hough变换和最小二乘法从点云中提取直线和圆,取得了较满意的结果。对两种算法的提取效果进行了比较。[J]. Geomatics and Information Science of Wuhan University, 2011, 36(6): 674-677.
    [9]ZHENG Zhaobao. Research About New Method of Image Segmentation Based on Attractor[J]. Geomatics and Information Science of Wuhan University, 2010, 35(10): 1192-1196.
    [10]JIANG Jingjue, ZHANG Zuxun, MING Ying. Filtering of Lidar Point Clouds for Complex Cityscapes[J]. Geomatics and Information Science of Wuhan University, 2007, 32(5): 402-405.

Catalog

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return