Citation: | XIANG Xueyong, LI Guangyun, WANG Li, ZONG Wenpeng, LÜ Zhipeng, XIANG Fengzhuo. Semantic Segmentation of Point Clouds Using Local Geometric Features and Dilated Neighborhoods[J]. Geomatics and Information Science of Wuhan University, 2023, 48(4): 534-541. DOI: 10.13203/j.whugis20200567 |
[1] |
Hackel T, Wegner J D, Schindler K. Fast Semantic Segmentation of 3D Point Clouds with Strongly Varying Density[J]. ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences, 2016, Ⅲ-3: 177-184.
|
[2] |
杨必胜, 董震. 点云智能处理[M]. 北京: 科学出版社, 2020.
Yang Bisheng, Dong Zhen. Intelligent Processing of Point Cloud[M]. Beijing: Science Press, 2020.
|
[3] |
杨必胜, 梁福逊, 黄荣刚. 三维激光扫描点云数据处理研究进展、挑战与趋势[J]. 测绘学报, 2017, 46(10): 1509-1516. https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201710034.htm
Yang Bisheng, Liang Fuxun, Huang Ronggang. Progress, Challenges and Perspectives of 3D LiDAR Point Cloud Processing[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10): 1509-1516. https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201710034.htm
|
[4] |
Castillo E, Liang J, Zhao H K. Point Cloud Segmentation and Denoising via Constrained Nonlinear Least Squares Normal Estimates[M]//Heidelberg, Berlin: Springer, 2012.
|
[5] |
Anh V. Octree-Based Region Growing for Point Cloud Segmentation[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2015, 104: 88-100. doi: 10.1016/j.isprsjprs.2015.01.011
|
[6] |
张良培, 张云, 陈震中, 等. 基于分裂合并的多模型拟合方法在点云分割中的应用[J]. 测绘学报, 2018, 47(6): 833-843. https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201806017.htm
Zhang Liangpei, Zhang Yun, Chen Zhenzhong, et al. Splitting and Merging Based Multi-model Fitting for Point Cloud Segmentation[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(6): 833-843. https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201806017.htm
|
[7] |
闫利, 谢洪, 胡晓斌, 等. 一种新的点云平面混合分割方法[J]. 武汉大学学报(信息科学版), 2013, 38(5): 517-521. http://ch.whu.edu.cn/article/id/2631
Yan Li, Xie Hong, Hu Xiaobin, et al. A New Hybrid Plane Segmentation Approach of Point Cloud[J]. Geomatics and Information Science of Wuhan University, 2013, 38(5): 517-521. http://ch.whu.edu.cn/article/id/2631
|
[8] |
熊汉江, 郑先伟, 丁友丽, 等. 基于2D-3D语义传递的室内三维点云模型语义分割[J]. 武汉大学学报(信息科学版), 2018, 43(12): 2303-2309. doi: 10.13203/j.whugis20180190
Xiong Hanjiang, Zheng Xianwei, Ding Youli, et al. Semantic Segmentation of Indoor 3D Point Cloud Model Based on 2D-3D Semantic Transfer[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12): 2303-2309. doi: 10.13203/j.whugis20180190
|
[9] |
Milioto A, Vizzo I, Behley J, et al. RangeNet: Fast and Accurate LiDAR Semantic Segmentation[C]// IEEE International Conference on Intelligent Robots and Systems (IROS), Macau, China, 2020.
|
[10] |
Maturana D, Scherer S. VoxNet: A 3D Convolutional Neural Network for Real-Time Object Recognition[C]// IEEE International Conference on Intelligent Robots and Systems (IROS), Hamburg, Germany, 2015.
|
[11] |
Charles R Q, Hao S, Mo K C, et al. PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation[C]// IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, USA, 2017.
|
[12] |
Qi C R, Yi L, Su H, et al. PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space[C]//The 31st International Conference on Neural Information Processing Systems, Long Beach, California, USA, 2017.
|
[13] |
Fisher Y, Koltun V. Multi-scale Context Aggregation by Dilated Convolutions[C]//International Conference on Learning Representations, San Juan, Puerto Rico, USA, 2016.
|
[14] |
Jiang M Y, Wu Y R, Zhao T Q, et al. PointSIFT: A SIFT-like Network Module for 3D Point Cloud Semantic Segmentation[J]. arXiv, 2018, DOI: 1807.00652.
|
[15] |
Li Y, Bu R, Sun M, et al. PointCNN: Convolution on X-Transformed Points[C]. Advances in Neural Information Processing Systems, Montréal, Canada, 2018.
|
[16] |
Liang Z D, Yang M, Li H, et al. 3D Instance Embedding Learning with a Structure-Aware Loss Function for Point Cloud Segmentation[J]. IEEE Robotics and Automation Letters, 2020, 5(3): 4915-4922.
|
[17] |
Ronneberger O, Fischer P, Brox T. U-Net: Convolutional Networks for Biomedical Image Segmentation[M]// Cham: Springer International Publishing, 2015.
|
[18] |
Zhao H S, Jiang L, Fu C W, et al. PointWeb: Enhancing Local Neighborhood Features for Point Cloud Processing[C]// IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, USA, 2020.
|
[19] |
Thomas H, Qi C R, Deschaud J E, et al. KPConv: Flexible and Deformable Convolution for Point Clouds[C]// IEEE International Conference on Computer Vision (ICCV), Seoul, Korea (South), 2020.
|
[20] |
Hackel T, Savinov N, Ladicky L, et al. Semantic3D. Net: A New Large-Scale Point Cloud Classification Benchmark[J]. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2017, IV(1): 91-98.
|
[21] |
Wang F, Zhuang Y, Gu H, et al. OctreeNet: A Novel Sparse 3-D Convolutional Neural Network for Real-Time 3-D Outdoor Scene Analysis[J]. IEEE Transactions on Automation Science and Engineering, 2020, 17(2): 735-747.
|
[22] |
Contreras J, Denzler J. Edge-convolution Point Net for Semantic Segmentation of Large-scale Point Clouds[C]// IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 2019.
|
[23] |
Thomas H, Goulette F, Deschaud J E, et al. Semantic Classification of 3D Point Clouds with Multiscale Spherical Neighborhoods[C]// International Conference on 3D Vision (3DV), Verona, Italy, 2018.
|
[24] |
Roynard X, Deschaud J E, Goulette F. Classification of Point Cloud Scenes with Multiscale Voxel Deep Network[J]. arXiv, 2018, DOI: 1804.03583.
|
[1] | XIE Yakun, ZHANG Yang, HU Yunong, ZHAN Ni, SUN Ting, ZHU Jun, ZHU Qing. A Lightweight Approach to Railway Infrastructure BIM Models Considering Geometric Detail Features[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20240254 |
[2] | MA Tian-en, LIU Tao, DU Ping, CHEN Po-yi, LING Zhen-fei. A 3D Point Cloud Semantic Segmentation Method for Aggregating Global Context Information[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20230143 |
[3] | LI Qingquan, WANG Chisheng, XIONG Siting, ZHANG Dejin, ZOU Qin, TU Wei. Generalized Surveying Data Processing: From Geometric Parameters Calculation to Feature Information Extraction[J]. Geomatics and Information Science of Wuhan University, 2022, 47(11): 1805-1814. DOI: 10.13203/j.whugis20220606 |
[4] | JIANG Tengping, YANG Bisheng, ZHOU Yuzhou, ZHU Runsong, HU Zongtian, DONG Zhen. Bilevel Convolutional Neural Networks for 3D Semantic Segmentation Using Large-scale LiDAR Point Clouds in Complex Environments[J]. Geomatics and Information Science of Wuhan University, 2020, 45(12): 1942-1948. DOI: 10.13203/j.whugis20200081 |
[5] | LUMiao, MEI Yang, ZHAO Yong, LENG Liang. Change Detection Based on Multi-scale Geometric Feature Vector[J]. Geomatics and Information Science of Wuhan University, 2015, 40(5): 623-627. DOI: 10.13203/j.whugis20130382 |
[6] | Pang Shiyan, Liu YawenZuo Zhiqi, Chen Zhengfu, . Combination of Region Growing and TIN Edge Segmentation for Extraction of Geometric Features on Building Facades[J]. Geomatics and Information Science of Wuhan University, 2015, 40(1): 102-106. |
[7] | WANG Huibing, TANG Xinming, QIU Bo, WANG Wenjie. Geometric Matching Method of Area Feature Based on Multi-weighted Operators[J]. Geomatics and Information Science of Wuhan University, 2013, 38(10): 1243-1247. |
[8] | SUN Yizhong, YAO Chi, CHEN Shaoqin, XU Wenxiang. Geographical Elements′ Spatial Location Identification Considering Geometric Features[J]. Geomatics and Information Science of Wuhan University, 2012, 37(12): 1486-1489. |
[9] | WU Zhaocong, QIN Maoyun, ZHANG Xiao. A Cloud-Model-Based Remote Sensing Image Segmentation Concerned with Geometrical Features[J]. Geomatics and Information Science of Wuhan University, 2008, 33(9): 939-942. |
[10] | Shi Wenzhong. Error Models for Geometric Features in Three Dimensional GIS[J]. Geomatics and Information Science of Wuhan University, 1998, 23(1): 18-20,25. |