YAN Li, XIE Hong, HU Xiaobin, BAO Xiuwu. A New Hybrid Plane Segmentation Approach of Point Cloud[J]. Geomatics and Information Science of Wuhan University, 2013, 38(5): 517-521.
Citation: YAN Li, XIE Hong, HU Xiaobin, BAO Xiuwu. A New Hybrid Plane Segmentation Approach of Point Cloud[J]. Geomatics and Information Science of Wuhan University, 2013, 38(5): 517-521.

A New Hybrid Plane Segmentation Approach of Point Cloud

Funds: 国家自然科学基金资助项目(40971192);武汉大学博士研究生自主科研资助项目(214275573)
More Information
  • Received Date: March 25, 2013
  • Revised Date: March 25, 2013
  • Published Date: May 04, 2013
  • To improve the efficiency and reliability of plane segmentation for point cloud simultaneously,a novel segmentation approach with the combination of region growing and RANSAC is presented.For the automatic selection of the seed plane,the octree nodes are verified for their flatness,the parameters of which are using as the region growing constraints to get the initial segmentation results. Then the nodes are checked for the need of further division and segmentation according to the initial results.The final results are gained after the post processing of merging and refining parameters using RANSAC.During the segmentation process,the computation of the points’ properties such as normal vector is not required. The implemented experiment shows that our method is efficient and robust.
  • Related Articles

    [1]ZHANG Wangfei, WEN Zhe, ZHANG Yahong, ZHANG Tingwei, LI Yun. Feasibility Analysis of Stokes Related Parameters for Oilseed Rape Growth Monitoring[J]. Geomatics and Information Science of Wuhan University, 2020, 45(2): 242-249. DOI: 10.13203/j.whugis20180375
    [2]LI Houpu, BIAN Shaofeng, JI Bing, CHEN Yongbing. Precise Calculation of Innermost Area Effects in Altimetry Gravity Based on the Inverse Vening-Meinesz Formula[J]. Geomatics and Information Science of Wuhan University, 2019, 44(2): 200-205. DOI: 10.13203/j.whugis20150744
    [3]LIU Min, HUANG Motao, DENG Kailiang, OUYANG Yongzhong, ZHAI Guojun, WU Taiqi. Test and Analysis of Upward Continuation Models for Earth Surface Gravity with Regard to the Effect of Topographic Height[J]. Geomatics and Information Science of Wuhan University, 2018, 43(1): 112-119. DOI: 10.13203/j.whugis20150519
    [4]Zhai Zhenhe, Wang Xingtao, Li Yingchun. Solution and Comparison of High Order Term of Analytical Continuation[J]. Geomatics and Information Science of Wuhan University, 2015, 40(1): 134-138.
    [5]CHU Yonghai, LI Jiancheng, CHAO Dingbo, FU Lu. The Application of Two Types of Modified Stokes's Kernels for Geoid Determination in the Coastal Areas of China Sea[J]. Geomatics and Information Science of Wuhan University, 2012, 37(10): 1160-1163.
    [6]JIANG Tao, WANG Zhengtao, LI Dawei, FENG Hai. Fast Algorithm for the Discrete Summation of Stokes’ and Hotine’s Integral[J]. Geomatics and Information Science of Wuhan University, 2012, 37(5): 606-609.
    [7]WAN Xiaoyun, YU Jinhai. Accuracy Analysis of the Remove-Restore Process in Inverse Stokes Formula[J]. Geomatics and Information Science of Wuhan University, 2012, 37(1): 77-80.
    [8]WANG Rui, LI Houpu. Calculation of Innermost Area Effects in Altimetry Gravity Recovery Based on the Inverse Stokes Formula[J]. Geomatics and Information Science of Wuhan University, 2010, 35(4): 467-471.
    [9]CHAO Dingbo. A Note on Stokes Formula in the Form of Spherical and Planar Convolution[J]. Geomatics and Information Science of Wuhan University, 2003, 28(6): 651-654.
    [10]Wang Kunjie, Li Jianchen. An Effective Method of Eliminating the Approximation Errors in Stokes Integration Convolution Formula[J]. Geomatics and Information Science of Wuhan University, 1993, 18(4): 34-39.

Catalog

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return