CHEN Yong, DU Bo, ZHANG Lefei, ZHANG Liangpei. A Hybrid Detector for High Resolution Remote Sensing Image Based on Spectral Matching and Tensor Analysis[J]. Geomatics and Information Science of Wuhan University, 2013, 38(3): 274-277.
Citation: CHEN Yong, DU Bo, ZHANG Lefei, ZHANG Liangpei. A Hybrid Detector for High Resolution Remote Sensing Image Based on Spectral Matching and Tensor Analysis[J]. Geomatics and Information Science of Wuhan University, 2013, 38(3): 274-277.

A Hybrid Detector for High Resolution Remote Sensing Image Based on Spectral Matching and Tensor Analysis

More Information
  • Received Date: December 10, 2012
  • Published Date: March 04, 2013
  • We proposed a hybrid detector based on spectral matching and tensor analysis, which is designed for hyperspectral and high resolution remote sensing images. Firstly, a spectral matching is performed in vector space using adaptive coherence/cosine estimator (ACE). Then, the result pixels of whose spectral are similar with targets spectral are further processed by support tensor machine (STM) to detect the real targets from the background pixels. The experimental results on CRI dataset demonstrate that the proposed approach could obviously reduce the processing time and improve the targets detection precision.
  • [1]
    Du B, Zhang L. Random\|Selection\|Based Anomaly Detector for Hyperspectral Imagery[J]. IEEE Trans Geosci Remote Sens,2011,49(5):1 578\|1 589
    [2]
    Manolakis D, Shaw G. Detection Algorithms for Hyperspectral Imaging Applications[J]. IEEE Signal Process Mag,2002,19(1):29\|43
    [3]
    Huang X, Zhang L. An Adaptive Mean\|Shift Analysis Approach for Object Extraction and Classification from Urban Hyperspectral Imagery[J]. IEEE Trans Geosci Remote Sens, 2008,46(12):4 173\|4 185
    [4]
    Aja\|Fernández S, García R d L, Tao D, et al. Tensors in Image Processing and Computer Vision[M]. New York: Springer, 2009
    [5]
    Zhang Lefei, Zhang Liangpei, Tao Dacheng, et al. A Multifeature Tensor for Remote\|Sensing Target Recognition[J]. IEEE Geosci Remote Sens Lett, 2011,8(2):374\|378
    [6]
    Zhang L, Du B, Zhong Y. Hybrid Detectors Based on Selective Endmembers[J]. IEEE Trans Geosci Remote Sens, 2010,48(6):2 633\|2 646
    [7]
    Zhang L, Tao D, Huang X. On Combining Multiple Features for Hyperspectral Remote Sensing Image Classification[J]. IEEE Trans Geosci Remote Sens, 2012,50(3):879\|893
    [8]
    杜博,张良培,李平湘,等. 基于最小噪声分离的约束能量最小化亚像元目标探测方法[J]. 中国图像图形学报,2009,14(9):1 850\|1 857
    [9]
    徐毓, 李群, 周焰, 等. 按分量加权的探测目标状态线性融合[J]. 武汉大学学报\5信息科学版,2002,27(4):420\|423
  • Related Articles

    [1]MA Tian-en, LIU Tao, DU Ping, CHEN Po-yi, LING Zhen-fei. A 3D Point Cloud Semantic Segmentation Method for Aggregating Global Context Information[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20230143
    [2]XIANG Xueyong, LI Guangyun, WANG Li, ZONG Wenpeng, LÜ Zhipeng, XIANG Fengzhuo. Semantic Segmentation of Point Clouds Using Local Geometric Features and Dilated Neighborhoods[J]. Geomatics and Information Science of Wuhan University, 2023, 48(4): 534-541. DOI: 10.13203/j.whugis20200567
    [3]YANG Yuqi, CHEN Chi, YANG Bisheng, HU Pingbo, CUI Yang. 3D Change Detection of Buildings Based on Multi-level Segmentation of Dense Matching Point Clouds from UAV Images[J]. Geomatics and Information Science of Wuhan University, 2021, 46(4): 489-496. DOI: 10.13203/j.whugis20190030
    [4]JIANG Tengping, YANG Bisheng, ZHOU Yuzhou, ZHU Runsong, HU Zongtian, DONG Zhen. Bilevel Convolutional Neural Networks for 3D Semantic Segmentation Using Large-scale LiDAR Point Clouds in Complex Environments[J]. Geomatics and Information Science of Wuhan University, 2020, 45(12): 1942-1948. DOI: 10.13203/j.whugis20200081
    [5]ZHANG Ruiju, ZHOU Xin, ZHAO Jianghong, CAO Min. A Semantic Segmentation Algorithm of Ancient Building's Point Cloud Data[J]. Geomatics and Information Science of Wuhan University, 2020, 45(5): 753-759. DOI: 10.13203/j.whugis20180428
    [6]YAN Li, XIE Hong, HU Xiaobin, BAO Xiuwu. A New Hybrid Plane Segmentation Approach of Point Cloud[J]. Geomatics and Information Science of Wuhan University, 2013, 38(5): 517-521.
    [7]HU Ju, YANG Liao, SHEN Jinxiang, WU Xiaobo. Filtering of LiDAR Based on Segmentation[J]. Geomatics and Information Science of Wuhan University, 2012, 37(3): 318-321.
    [8]ZHAN Qingming ZHOU Xingang, XIAO Yinghui, YU Liang, . 对古建筑激光扫描点云进行分割、识别,并利用Hough变换和最小二乘法从点云中提取直线和圆,取得了较满意的结果。对两种算法的提取效果进行了比较。[J]. Geomatics and Information Science of Wuhan University, 2011, 36(6): 674-677.
    [9]ZHENG Zhaobao. Research About New Method of Image Segmentation Based on Attractor[J]. Geomatics and Information Science of Wuhan University, 2010, 35(10): 1192-1196.
    [10]JIANG Jingjue, ZHANG Zuxun, MING Ying. Filtering of Lidar Point Clouds for Complex Cityscapes[J]. Geomatics and Information Science of Wuhan University, 2007, 32(5): 402-405.

Catalog

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return