He Guohong. Some Problems of Adjustment of A Network with Rank-Defects Discussed by Means of Orthogonal Similar Transformation Method[J]. Geomatics and Information Science of Wuhan University, 1985, 10(2): 82-91.
Citation: He Guohong. Some Problems of Adjustment of A Network with Rank-Defects Discussed by Means of Orthogonal Similar Transformation Method[J]. Geomatics and Information Science of Wuhan University, 1985, 10(2): 82-91.

Some Problems of Adjustment of A Network with Rank-Defects Discussed by Means of Orthogonal Similar Transformation Method

More Information
  • Received Date: May 31, 1984
  • Published Date: February 04, 1985
  • In this paper we find a solution of adjustment with rank-defects of a free network by means of the method of orthogonal similar transformation.This method coordinates and combines the charaeteristic of "the method of generalized inverses","the method of pseudobsevation" and "the method of auxiliary condition".Thus in demonstrating some basic theoretical problems of the adjustment,the results can be obtained simply and directely by use of the method.
  • Related Articles

    [1]WANG Chang, ZHANG Yongsheng, WANG Xu. SAR Image Change Detection Based on Variational Method and Markov Random Field Fuzzy Local Information C-Means Clustering Method[J]. Geomatics and Information Science of Wuhan University, 2021, 46(6): 844-851. DOI: 10.13203/j.whugis20190167
    [2]ZHENG Zhaobao, PAN Li, ZHENG Hong. A Method of Image Texture Texton Classification with Markov Random Field[J]. Geomatics and Information Science of Wuhan University, 2017, 42(4): 463-467. DOI: 10.13203/j.whugis20150615
    [3]Lin Da, Xu Xin, Pan Xuefeng, Zhang Haitao. Segmentation of SAR Image of MSTAR SAR Chips Based on Attributed Scattering Center Feature and Markov Random Field[J]. Geomatics and Information Science of Wuhan University, 2014, 39(11): 1314-1317.
    [4]YU Changhui, YI Yaohua. Object-based Road Extraction in Remote Sensing Image Using Markov Random Field[J]. Geomatics and Information Science of Wuhan University, 2011, 36(5): 544-547.
    [5]ZHANG Bin, YANG Ran, XIE Xing, QIN Qianqing. Classification of Fully Polarimetric SAR Image Based on Polarimetric Target Decomposition and Wishart Markov Random Field[J]. Geomatics and Information Science of Wuhan University, 2011, 36(3): 297-300.
    [6]ZHENG Chen, WANG Leiguang, HU Yijun, QIN Qianqing. Texture Segmentation Based on Multiscale Fuzzy Markov Random Field Model in Wavelet Domain[J]. Geomatics and Information Science of Wuhan University, 2010, 35(9): 1074-1078.
    [7]GONG Yan, SHU Ning. Texture Segmentation of Multispectral Remote Sensing Image Based on Markov Random Field[J]. Geomatics and Information Science of Wuhan University, 2007, 32(3): 213-215.
    [8]ZHENG Zhaobao, ZHENG Hong. The Decision of the Optimal Parameters in Markov Random Fields of Images by Genetic Algorithm[J]. Geomatics and Information Science of Wuhan University, 2000, 25(3): 221-225.
    [9]Zheng Hong, Zheng Zhaobao. The Knowledge Acquisition Based on Markov Random Field for Aeroimage Understanding[J]. Geomatics and Information Science of Wuhan University, 1997, 22(4): 314-317.
    [10]Huang Guilan, Zheng Zhaobao. A Method of Image Texture Classification Based on Markov Random Field[J]. Geomatics and Information Science of Wuhan University, 1996, 21(3): 232-236,241.

Catalog

    Article views (608) PDF downloads (195) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return