WANG Chang, ZHANG Yongsheng, WANG Xu. SAR Image Change Detection Based on Variational Method and Markov Random Field Fuzzy Local Information C-Means Clustering Method[J]. Geomatics and Information Science of Wuhan University, 2021, 46(6): 844-851. DOI: 10.13203/j.whugis20190167
Citation: WANG Chang, ZHANG Yongsheng, WANG Xu. SAR Image Change Detection Based on Variational Method and Markov Random Field Fuzzy Local Information C-Means Clustering Method[J]. Geomatics and Information Science of Wuhan University, 2021, 46(6): 844-851. DOI: 10.13203/j.whugis20190167

SAR Image Change Detection Based on Variational Method and Markov Random Field Fuzzy Local Information C-Means Clustering Method

Funds: 

The National Natural Science Foundation of China 41671409

More Information
  • Author Bio:

    WANG Chang, PhD, associate professor, specializes in remote sensing image processing. E-mail: Wangchang324@163.com

  • Received Date: November 22, 2020
  • Published Date: June 04, 2021
  •   Objectives  In order to improve the accuracy of SAR(synthetic aperture radar) image change detection, this paper proposes a method of SAR image change detection based on variational method and Markov random field fuzzy local information C-means clustering(MRFFLICM) method.
      Methods  Firstly, we fuse the logarithmic ratio images and logarithmic mean ratio images to construct the difference image. Secondly, variational denoising model is established to remove the noise from difference images. Finally, the spatial neighborhood information is introduced into fuzzy local information C-means clustering method by using Markov random field to improve the clustering performance.
      Results  Experiments on two real SAR datasets show that the proposed variational denoising method can avoid removing the small change region and effectively suppress speckle noise of SAR image.
      Conclusions  The MRFFLICM method can effectively improve the precision of change detection, thus enhancing the adaptability of change detection method.
  • [1]
    Bovolo F, Bruzzone L. A Detail-Preserving Scale-Driven Approach to Change Detection in Multitemporal SAR Images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(12): 2 963-2 972 doi: 10.1109/TGRS.2005.857987
    [2]
    Inglada G, Mercier G. A New Statistical Similarity Measure for Change Detection in Multitemporal SAR Images and Its Extension to Multiscale Change Analysis[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(5): 1 432-1 445 doi: 10.1109/TGRS.2007.893568
    [3]
    Ma J J, Gong M G, Zhou Z Q. Wavelet Fusion on Ratio Images for Change Detection in SAR Images[J]. IEEE Geoscience and Remote Sensing Letters, 2012, 18(6): 1 122-1 126
    [4]
    Hou B, Wei Q N, Zheng Y G, Wang S. Unsupervised Change Detection in SAR Image Based on Gauss-Log Ratio Image Fusion and Compressed Projection[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(8): 3 297-3 317 doi: 10.1109/JSTARS.2014.2328344
    [5]
    周文艳, 贾振红, 杨杰. 基于组合差异图和FCM聚类的SAR图像变化检测[J]. 激光杂志, 2018, 39(3): 89-93 https://www.cnki.com.cn/Article/CJFDTOTAL-JGZZ201803020.htm

    Zhou Wenyan, Jia Zhenhong, Yang Jie. Change Detection in SAR Images Based on Combined Different Image and FCM Clustering[J]. Laser Journal, 2018, 39(3): 89-93 https://www.cnki.com.cn/Article/CJFDTOTAL-JGZZ201803020.htm
    [6]
    庄会富, 邓喀中, 余美, 等. 结合KI准则和逆高斯模型的SAR影像非监督变化检测[J], 武汉大学学报·信息科学版, 2018, 43(2): 282-288 doi: 10.13203/j.whugis20160079

    Zhuang Huifu, Deng Kazhong, Yu Mei, et al. A Novel Approach Combining KI Criterion and Inverse Gaussian Model to Unsupervised Change Detection in SAR Images[J]. Geomatics and Information Science of Wuhan University, 2018, 43(2): 282-288 doi: 10.13203/j.whugis20160079
    [7]
    Celik T. Unsupervised Change Detection in Satellite Images Using Principal Component Analysis and K-Means Clustering[J]. IEEE Geoscience & Remote Sensing Letters, 2009, 6(4): 772-776
    [8]
    Gong M, Zhou Z, Ma J. Change Detection in Synthetic Aperture Radar Images Based on Image Fusion and Fuzzy Clustering[J]. IEEE Transactions Image Process, 2012, 21(4): 2 141-2 151 doi: 10.1109/TIP.2011.2170702
    [9]
    Pal N R, Pal K, Keller J M, et al. A Possibilistic Fuzzy C-Means Clustering Algorithm[J]. IEEE Transactions on Fuzzy Systems, 2005, 13(4): 517-530 doi: 10.1109/TFUZZ.2004.840099
    [10]
    Stelios K, Vassilios C. A Robust Fuzzy Local Information C-Means Clustering Algorithm[J] IEEE Transactions on Image Processing, 2010, 19(5): 1 328-1 337 doi: 10.1109/TIP.2010.2040763
    [11]
    Yousif O, Ban Y. Improving SAR-Based Urban Change Detection by Combing MAPMRF Classifier and Nonlocal Means Similarity Weights[J]. IEEE Journal of Selected Topics in Applied Earth, 2014, 7(10): 4 288-4 300 doi: 10.1109/JSTARS.2014.2347171
    [12]
    Gong M, Su L, Jia M, et al. Fuzzy Clustering with a Modified MRF Energy Function for Change Detection in Synthetic Aperture Radar Images[J]. IEEE Transactions on Fuzzy Systems, 2014, 22(1): 98-109 doi: 10.1109/TFUZZ.2013.2249072
    [13]
    Feng Gao, Jun Yudong, Bo Li, et al. Change Detection from Synthetic Aperture Radar Images Based on Neighborhood-Based Ratio and Extreme Learning Machine[J]. Journal of Applied Remote Sensing, 2016, 10(4) : 1-14
    [14]
    Gong Maoguo, Zhao Jiaojiao, Liu Jia, et al. Change Detection in Synthetic Aperture Radar Images Based on Deep Neural Networks[J]. IEEE Transactions on Neural Networks and Learning Systems, 2016, 27(1): 125-138 doi: 10.1109/TNNLS.2015.2435783
    [15]
    Liao F, Koshelev E, Malcolm M, et al. Change Detection by Deep Neural Networks for Synthetic Aperture Radar Images[C]//International Conference on Computing, Networking and Communications (ICNC), Silicon Valley, California, USA, 2017
    [16]
    Yan Weidong, Shi Shaojun, Pan Lulu, et al. Unsupervised Change Detection in SAR Images Based on Frequency Difference and a Modified Fuzzy C-Means Clustering[J]. International Journal of Remote Sensing, 2018, 39(10): 3 055-3 075 doi: 10.1080/01431161.2018.1434325
    [17]
    王昶, 王旭, 纪松. 基于变分法遥感影像条带噪声去除[J]. 西安交通大学学报, 2019, 53(3): 143-149 https://www.cnki.com.cn/Article/CJFDTOTAL-XAJT201903020.htm

    Wang Chang, Wang Xu, Ji Song. Stripe Noise Removal of Remote Images Based on Variation[J]. Journal of Xi'an Jiaotong University, 2019, 53(3): 143-149 https://www.cnki.com.cn/Article/CJFDTOTAL-XAJT201903020.htm
  • Related Articles

    [1]CHENG Penggen, YUE Chen. Evaluation of Urban Ecological Environment and Its Relationship with Human Activities with Multi-source Data[J]. Geomatics and Information Science of Wuhan University, 2022, 47(11): 1927-1937. DOI: 10.13203/j.whugis20200382
    [2]HU Kailong, LIU Qingwang, CUI Ximin, PANG Yong, MU Xiyun. Regional Forest Canopy Height Estimation Using Multi-source Remote Sensing Data[J]. Geomatics and Information Science of Wuhan University, 2018, 43(2): 289-296, 303. DOI: 10.13203/j.whugis20160066
    [3]LI Deren, LUO Hui, SHAO Zhenfeng. Review of Impervious Surface Mapping Using Remote Sensing Technology and Its Application[J]. Geomatics and Information Science of Wuhan University, 2016, 41(5): 569-577,703. DOI: 10.13203/j.whugis20160038
    [4]XinjiangPEI Huan, FANG Shifeng, QIN Zhihao, HOU Chunliang. Method and Application of Ecological Environment Vulnerability Evaluation in Arid Oasis ——A Case Study of Turpan Oasis[J]. Geomatics and Information Science of Wuhan University, 2013, 38(5): 528-532.
    [5]PANG Xiaoping, E Dongchen, WANG Zipan, SUN Fangdi. GIS-Based Assessment of Eco-environmental Vulnerability of Ice-Free Areas in Antarctica[J]. Geomatics and Information Science of Wuhan University, 2008, 33(11): 1174-1177.
    [6]WU Kaiya, JIN Juliang, WANG Lingjie, WANG Wensheng. Application of Set Pair Analysis Classified Prediction Method to Predicting Dynamic Change of Regional Ecological Footprint[J]. Geomatics and Information Science of Wuhan University, 2008, 33(9): 973-977.
    [7]ZHONG Xiaoqing, ZHAO Yongliang, ZHONG Shan, SI Huan. Dynamic Analysis on China's Ecological Footprint Supply and Demand from 1978 to 2004[J]. Geomatics and Information Science of Wuhan University, 2006, 31(11): 1022-1026.
    [8]XIE Hongyu, LIU Nianfeng, YAO Ruizhen, SONG Weiwei. Resource Yield Method on Ecological Footprint Analysis[J]. Geomatics and Information Science of Wuhan University, 2006, 31(11): 1018-1021.
    [9]SUN Hua, LI Yunmei, Wang Xiuzhen, NI Shaoxiang. Methods and Applications of Landscape Ecological Evaluation in the Typical Small Watershed's Land Use[J]. Geomatics and Information Science of Wuhan University, 2003, 28(2): 177-181.
    [10]YU Jie, BIAN Fuling, HU Bingqing. Dynamic Simulation on the Relationship Between Socio-economic Development and Eco-environment Based on the Integration of GIS and SD[J]. Geomatics and Information Science of Wuhan University, 2003, 28(1): 18-24.
  • Cited by

    Periodical cited type(4)

    1. 徐洪秀,杨玉忠,王赫,吴洪涛,谭新宇. 三维地籍测绘研究及其标准化探索. 测绘通报. 2024(01): 136-140 .
    2. 刘冰洁,朱敏,孙在宏,吴长彬. 顾及人眼视觉感知特征的三维地籍产权体最优视点选择方法. 地理与地理信息科学. 2023(01): 1-7+61 .
    3. 张衡,赵志刚,朱维,唐骜巍,李泽宇. 面向三维界址编码的产权体无损降维表达方法. 测绘科学. 2023(08): 202-209 .
    4. 王芮,严立,陆文雨. 融合实景三维信息的三维地籍空间模型构建与应用探索. 测绘通报. 2021(S1): 6-9+28 .

    Other cited types(1)

Catalog

    Article views (917) PDF downloads (69) Cited by(5)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return