ZHENG Yi, WU Jicang, WANG Jiexian, GU Guohua. Ocean Tidal Displacement Corrections in GPS Precision Positioning[J]. Geomatics and Information Science of Wuhan University, 2003, 28(4): 405-408,421.
Citation: ZHENG Yi, WU Jicang, WANG Jiexian, GU Guohua. Ocean Tidal Displacement Corrections in GPS Precision Positioning[J]. Geomatics and Information Science of Wuhan University, 2003, 28(4): 405-408,421.

Ocean Tidal Displacement Corrections in GPS Precision Positioning

More Information
  • Received Date: March 11, 2003
  • Published Date: April 04, 2003
  • Based on the theory of ocean loading tide,by using NAO99b global ocean tide model,the ocean tidal displacement corrections for some IGS stations in China are calculated.These corrections are also applied to GPS data processing.The GPS baseline components and station coordinates computed by the GAMIT software with and without these corrections are computed,compared and analyzed.The results show that the ocean tidal displacement corrections have effects both on GPS baseline components and on station coordinates.To short time GPS data processing,the corrections are more than 1mm;but to long time processing,the corrections have little effects.
  • Related Articles

    [1]LI Peiling, LI Zhiwei, MAO Wenxiang. A Fast Atmospheric Correction Method of SBAS-InSAR based on Fixed Rank Kriging[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20240162
    [2]YUAN Yuwei, LI Zhiwei, MU Minzheng. Application of China's First Generation Global Atmospheric Reanalysis Data in InSAR Atmospheric Correction: A Case Study of Southern California[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20230154
    [3]XU Fu, WANG Zheng, LI Zhenhong, LI Yongsheng. An Atmospheric Correction Method for Ground-Based Radar Under Complex Environment[J]. Geomatics and Information Science of Wuhan University, 2023, 48(12): 2069-2081. DOI: 10.13203/j.whugis20220466
    [4]KUANG Cuilin, ZHANG Jinsheng, LU Chenlong, YI Zhonghai. Single-and Dual-Frequency Mixed Mode GPS Network for Ground Deformation Monitoring[J]. Geomatics and Information Science of Wuhan University, 2016, 41(5): 692-697. DOI: 10.13203/j.whugis20140051
    [5]QIU Feng, CHEN Xiaoling, TIAN Liqiao, FENG Lian. Quality Improvement of Atmospheric Correction Products of MODIS with HJ-1A/B Satellite CCD Images[J]. Geomatics and Information Science of Wuhan University, 2012, 37(9): 1083-1086.
    [6]ZHOU Wenbin, XU Wenbin, LI Zhiwei, WANG Changcheng. Elevation-dependent MERIS Water Vapor Interpolation and Its Application to Atmospheric Correction on ASAR Interferogram[J]. Geomatics and Information Science of Wuhan University, 2012, 37(8): 963-977.
    [7]XU Yongming, QIN Zhihao, CHEN Aijun. A Pixel-by-Pixel Atmospheric Correction Algorithm for MODIS Data Based on Look-up Table[J]. Geomatics and Information Science of Wuhan University, 2010, 35(8): 959-962.
    [8]ZHAO Qiang, YANG Shizhi, QIAO Yanli, MA Jinji. Study of Simultaneous Non-linear Retrieval of Atmospheric Parameters and Surface Skin Temperature from MODIS Infrared Data[J]. Geomatics and Information Science of Wuhan University, 2009, 34(4): 400-403.
    [9]YAN Ziping, LI Zhenghong. Comparison of Atmospheric Water Vapour Correction Models for InSAR Measurements[J]. Geomatics and Information Science of Wuhan University, 2008, 33(7): 723-726.
    [10]LIU Liangming, ZHANG Hongmei, ZHANG Feng. Atmospheric Correction of MODIS Imagery for Turbid Coastal Waters[J]. Geomatics and Information Science of Wuhan University, 2007, 32(2): 104-107.

Catalog

    Article views (732) PDF downloads (206) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return