Citation: | YUAN Yuwei, LI Zhiwei, MU Minzheng. Application of China's First Generation Global Atmospheric Reanalysis Data in InSAR Atmospheric Correction: A Case Study of Southern California[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20230154 |
[1] |
Massonnet D, Rossi M, Carmona C, et al. The displacement field of the Landers earthquake mapped by radar interferometry[J]. Nature, 1993, 364(6433):138-142.
|
[2] |
Zebker H, Rosen P, Goldstein R, et al. On the derivation of coseismic displacement fields using differential radar interferometry:The Landers earthquake[J]. Journal of Geophysical Research B, 2002, 99(B10):19617-19634.
|
[3] |
Hu J, Li Z, Ding X, et al. 3D coseismic Displacement of 2010 Darfield, New Zealand earthquake estimated from multi-aperture InSAR and D-InSAR measurements[J]. Journal of Geodesy, 2012, 86(11):1029-1041.
|
[4] |
Xu Wenbin, Luo Xingjun, Zhu Jianjun, et al. Review of Volcano Deformation Monitoring and Modeling with InSAR[J]. Geomatics and Information Science of Wuhan University, 2023, 48(10):1632-1642.(许文斌,罗兴军,朱建军,等.InSAR火山形变监测与参数反演研究进展[J].武汉大学学报(信息科学版), 2023, 48(10):1632-1642.)
|
[5] |
Xu B, Li Z, Feng G, Zhang Z, Wang Q, Hu J, et al. Continent-Wide 2-D Co-Seismic Deformation of the 2015 Mw 8.3 Illapel, Chile Earthquake Derived from Sentinel-1A Data:Correction of Azimuth Co-Registration Error[J]. Remote Sensing, 2016, 8(5):1-12.
|
[6] |
Li Da, Deng Kazhong, Gao Xiaoxiong, Niu Haipeng. Monitoring and Analysis of Surface Subsidence in Mining Area Based on SBAS-InSAR[J]. Geomatics and Information Science of Wuhan University, 2018, 43(10):1531-1537.(李达,邓喀中,高晓雄,等. 基于SBAS-InSAR的矿区地表沉降监测与分析[J].武汉大学学报(信息科学版), 2018, 43(10):1531-1537.)
|
[7] |
Zhu Jianjun, Li Zhiwei, Hu Jun. Research Progress and Methods of InSAR for Deformation Monitoring[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10):1717-1733.(朱建军,李志伟,胡俊.InSAR变形监测方法与研究进展[J].测绘学报, 2017, 46(10):1717-1733.)
|
[8] |
Yang Z, Li Z, Zhu J, et al. Deriving time-series three-dimensional displacements of mining areas from a single-geometry InSAR dataset[J]. Journal of Geodesy, 2017, 11):1-16.
|
[9] |
Li Z, Cao Y, Wei J, et al. Time-series InSAR ground deformation monitoring:Atmospheric delay modeling and estimating[J]. Earth-Science Reviews, 2019, 192:258-284.
|
[10] |
Zebker H, Rosen P, Hensley S. Atmospheric effects in interferometric synthetic aperture radar surface deformation and topographic maps[J]. Journal of Geophysical Research Solid Earth, 1997, 102(B4):7547-7563.
|
[11] |
Hanssen R. Radar Interferometry Data Interpretation and Error Analysis[M]. IEEE, 2001.
|
[12] |
Li Z, Ding X, Huang C, et al. Modeling of atmospheric effects on InSAR measurements by incorporating terrain elevation information[J]. Journal of Atmospheric and SolarTerrestrial Physics, 2006, 68(11):1189-1194.
|
[13] |
Xu W, Li Z, Ding X, et al. Interpolating atmospheric water vapor delay by incorporating terrain elevation information[J]. Journal of Geodesy, 2011, 85(9):555-564.
|
[14] |
Hooper A, Bekaert, et al. Statistical comparison of InSAR tropospheric correction techniques[J]. Remote Sensing of Environment:An Interdisciplinary Journal, 2015. 170:40- 47.
|
[15] |
Cao Y, Li Z, Wei J, et al. Stochastic modeling for time series InSAR:with emphasis on atmospheric effects[J]. Journal of Geodesy, 2018, 92(2):185-204.
|
[16] |
Wei J, Li Z, Hu J, et al. Anisotropy of atmospheric delay in InSAR and its effect on InSAR atmospheric correction[J]. Journal of geodesy, 2019(2):93.
|
[17] |
Berardino P, Fornaro G, Lanari R, et al. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms[J]. Geoscience & Remote Sensing IEEE Transactions on, 2002, 40(11):2375-2383.
|
[18] |
Fukushima Y. Atmospheric Phase Delay Estimation From Multiple SAR Interferometry Measurements[C]. Fringe. 2012.
|
[19] |
Li Z, Ding X, Liu G. Modeling atmospheric effects on InSAR with meteorological and continuous GPS observations:algorithms and some test results[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2004, 66(11):907-917.
|
[20] |
Li Z, Fielding E, Cross P, et al. InSAR atmospheric correction GPS Topography-dependent Turbulence Model (GTTM)[J]. Journal of Geophysical Research Atmospheres, 2006, 111:B02404.
|
[21] |
Yu C, Penna N, Li Z. Generation of real-time mode high-resolution water vapor fields from GPS observations[J]. Journal of Geophysical Research, D. Atmospheres:JGR, 2017.
|
[22] |
Li Z. Correction of atmospheric water vapour effects on repeat-pass SAR interferometry using GPS, MODIS and MERIS data[J]. University College London (University of London), 2005.
|
[23] |
Li Z, Xu W, Feng G, et al. Correcting atmospheric effects on InSAR with MERIS water vapour data and elevation dependent interpolation model[J]. Geophysical Journal International, 2012, 189(2):898-910.
|
[24] |
Jung J, Kim D, Park S. Correction of Atmospheric Phase Screen in Time Series InSAR Using WRF Model for Monitoring Volcanic Activities[J]. IEEE Transactions on Geoscience & Remote Sensing, 2014, 52(5):2678-2689.
|
[25] |
Jolivet R, Agram P, Lin N, Simons M, Doin M, Peltzer G, et al. Improving InSAR geodesy using Global Atmospheric Models, Journal of Geophysical Research:Solid Earth, 2014,119:18.
|
[26] |
Hu Z, Jordi J. An Accurate Method to Correct Atmospheric Phase Delay for InSAR with the ERA5 Global Atmospheric Model[J]. Remote Sensing,2019,11(17):1969.
|
[27] |
Cao Y, Jonsson S, Li Z. Advanced InSAR Tropospheric Corrections from Global Atmospheric Models that Incorporate Spatial Stochastic Properties of the Troposphere[J]. Journal of Geophysical Research Solid Earth,2021.
|
[28] |
Wang Minyan, Yao Shuang, Jiang Lipeng, et al. Collection and preprocessing of Global Atmospheric reanalysis (CRA-40) Satellite remote Sensing data in China[J]. Advances in Meteorological Science and Technology, 2018,8(1):158-163(王旻燕,姚爽,姜立鹏,等.我国全球大气再分析(CRA-40)卫星遥感资料的收集和预处理[J].气象科技进展,2018,8(1):158-163.)
|
[29] |
Shi Chunxiang. Multi-source fusion grid live data and the development and application progress of the first generation global atmospheric reanalysis products in China.[R] Beijing:Intelligent Earth Lecture Hall,2021.(师春香.多源融合网格实况数据与我国第一代全球大气再分析产品研发与应用进展[R].北京:智慧地球大讲堂,2021.)
|
[30] |
Yu X, Zhang L, Zhou T, et al. The Asian subtropical westerly jet stream in CRA-40, ERA5, and CFSR reanalysis data:comparative assessment[J]. Journal of Meteorological Research, 2021,35(1):46-63
|
[31] |
Li Z, Cao Y, Wei J, et al. Time-series InSAR ground deformation monitoring:Atmospheric delay modeling and estimating[J]. Earth-Science Reviews, 2019, 192:258-284.
|
[32] |
Yao Yibin, Zhang Liang, Zhang Qi, et al. Tropospheric Delay Model and Real-Time Differencial Service for Large Height Difference RTK[J]. Geomatics and Information Science of Wuhan University, 2023, 48(7):1019-1028.(姚宜斌,张良,张琦, 等.面向大高差RTK的对流层延迟改正模型及实时差分服务构建[J].武汉大学学报(信息科学版), 2023, 48(7):1019-1028.)
|
[33] |
Hu Y, Yao Y. An Accurate Height Reduction Model for Zenith Tropospheric Delay Correction Using ECMWF Data[C]//China Satellite Navigation Conference. Springer, Singapore, 2017.
|
[34] |
Onn F, Zebker H. Correction for interferometric synthetic aperture radar atmospheric phase artifacts using time series of zenith wet delay observations from a GPS network[J]. Journal of Geophysical Research Solid Earth, 2006, 111(B9).
|
[35] |
Zhou Wenbin, Xu Wenbin, Li Zhiwei, et al. Elevation-dependent MERIS Water Vapor Interpolation and Its Application to Atmospheric Correction on ASAR Interferogram[J]. Geomatics and Information Science of Wuhan University, 2012, 37(8):963-977.(周文斌,许文斌,李志伟,等.考虑高程信息的MERIS水汽插值及其在ASAR干涉图大气改正中的应用[J].武汉大学学报(信息科学版), 2012, 37(8):963-977.)
|
[36] |
Xu B, Li Z, Wang Q, et al. A Refined Strategy for Removing Composite Errors of SAR Interferogram[J]. 2014.DOI: 10.1109/LGRS.2013.2250903.
|
[37] |
Li Z, Ding X, Huang C, et al. Modeling of atmospheric effects on InSAR measurements by incorporating terrain elevation information[J]. Journal of Atmospheric and SolarTerrestrial Physics, 2006, 68(11):1189-1194.
|
[38] |
Cao Y, Li Z, Wei J, et al. Stochastic modeling for time series InSAR:with emphasis on atmospheric effects[J]. Journal of Geodesy, 2018, 92(2):185-204.
|
[39] |
Gao Zhuang, He Xiufeng, Xiao Ruya, et al. An Improved LiCSBAS Method for Joint Estimation of Deformation and Atmospheric Errors[J]. Geomatics and Information Science of Wuhan University, 2023, 48(2):285-294.(高壮,何秀凤,肖儒雅, 等.一种联合估计形变和大气误差的改进 LiCSBAS方法[J]. 武汉大学学报(信息科学版),2023,48(2):285-294.)
|
[40] |
Xiao R, Yu C, Li Z, et al. Statistical assessment metrics for InSAR atmospheric correction:Applications to generic atmospheric correction online service for InSAR (GACOS) in Eastern China[J]. International Journal of Applied Earth Observation and Geoinformation, 2021, 96:102289.
|
[41] |
Yu C, Penna N, Li Z. Generation of real-time mode high-resolution water vapor fields from GPS observations[J]. Journal of Geophysical Research, D. Atmospheres:JGR, 2017.
|
[42] |
Chen Y, Li Z, Penna N, et al. Generic Atmospheric Correction Model for Interferometric Synthetic Aperture Radar Observations[J]. Journal of Geophysical Research:Solid Earth, 2018, 123.
|
[43] |
Yu C, Li Z, Penna N. Interferometric synthetic aperture radar atmospheric correction using a GPS-based iterative tropospheric decomposition model[J]. Remote Sensing of Environment, 2017, 204:109-121.
|
[44] |
Agram P, Jolivet R, et al, New Radar Interferometric Time Series Analysis Toolbox Released[J]. Eos Transactions American Geophysical Union, 2013, 94.
|
[1] | HUANG Li, GONG Zhipeng, LIU Fanfan, CHENG Qimin. Bus Passenger Flow Detection Model Based on Image Cross-Scale Feature Fusion and Data Augmentation[J]. Geomatics and Information Science of Wuhan University, 2024, 49(5): 700-708. DOI: 10.13203/j.whugis20220690 |
[2] | HOU Zhaoyang, LÜ Kaiyun, GONG Xunqiang, ZHI Junhao, WANG Nan. Remote Sensing Image Fusion Based on Low-Level Visual Features and PAPCNN in NSST Domain[J]. Geomatics and Information Science of Wuhan University, 2023, 48(6): 960-969. DOI: 10.13203/j.whugis20220168 |
[3] | GUO Chunxi, GUO Xinwei, NIE Jianliang, WANG Bin, LIU Xiaoyun, WANG Haitao. Establishment of Vertical Movement Model of Chinese Mainland by Fusion Result of Leveling and GNSS[J]. Geomatics and Information Science of Wuhan University, 2023, 48(4): 579-586. DOI: 10.13203/j.whugis20200167 |
[4] | TU Chao-hu, YI Yao-hua, WANG Kai-li, PENG Ji-bing, YIN Ai-guo. Adaptive Multi-level Feature Fusion for Scene Ancient Chinese Text Recognition[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20230176 |
[5] | LIN Dong, QIN Zhiyuan, TONG Xiaochong, QIU Chunping, LI He. Objected-Based Structural Feature Extraction Method Using Spectral and Morphological Information[J]. Geomatics and Information Science of Wuhan University, 2018, 43(5): 704-710. DOI: 10.13203/j.whugis20150627 |
[6] | LIN Xueyuan. Two-Level Distributed Fusion Algorithm for Multisensor Integrated Navigation System[J]. Geomatics and Information Science of Wuhan University, 2012, 37(3): 274-277. |
[7] | XU Kai, QIN Kun, DU Yi. Classification for Remote Sensing Data with Decision Level Fusion[J]. Geomatics and Information Science of Wuhan University, 2009, 34(7): 826-829. |
[8] | ZHAO Yindi, ZHANG Liangpei, LI Pingxiang. A Texture Classification Algorithm Based on Feature Fusion[J]. Geomatics and Information Science of Wuhan University, 2006, 31(3): 278-281. |
[9] | JIA Yonghong, LI Deren. An Approach of Classification Based on Pixel Level and Decision Level Fusion of Multi-source Images in Remote Sensing[J]. Geomatics and Information Science of Wuhan University, 2001, 26(5): 430-434. |
[10] | Li Linhui, Wang Yu, Liu Yueyan, Li Lei, Huang Jincheng, Zhou Yi, Cao Songlin. A Fast Fusion Model for Multi-Source Heterogeneous Data Of Real Estate Based on Feature Similarity[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20220742 |