Citation: | XU Fu, WANG Zheng, LI Zhenhong, LI Yongsheng. An Atmospheric Correction Method for Ground-Based Radar Under Complex Environment[J]. Geomatics and Information Science of Wuhan University, 2023, 48(12): 2069-2081. DOI: 10.13203/j.whugis20220466 |
The ground-based radar has features such as working all-time in all-weather, providing continuous observations with high spatiotemporal resolutions and can monitor landslides with high precision in near real-time. However, atmospheric effects represent one major limitation of ground-based radar, due to the spatiotemporal variations of the troposphere, especially in mountainous areas. Atmospheric variations are often treated as static signals and corrected by the range function model which can be unreliable, particularly when strong dynamic atmospheric turbulence occurs.
Based on its successful experience in the generic atmospheric correction online service for interferometric synthetic aperture radar (InSAR), the ground based iterative tropospheric decomposition (GBITD) model is utilized to decompose the tropospheric delay into stratification and turbulence components, and perform atmospheric correction. The GBITD model doesn't require global navigation satellite system or any external meteorological observations, which makes it flexible for InSAR atmospheric correction.
The application of the GBITD model to the 2018 Baige landslide suggests that the root mean square of two interferograms with temporal baselines of 2 min and 10 min decreased from 1.43 mm and 1.69 mm to 0.21 mm and 0.24 mm, respectively. The maximum cumulative displacement derived from the 778 images acquired during the period from 4 to 10 December 2018 was 1.4 m with the maximum displacement rate of 0.23 m/d.
The experimental results show that the GBITD method performes best compared against the homogeneous model and the stratified model in complex mountainous areas. Furthermore, Ground-based radar has obvious unique advantages in landslide monitoring, which can provide strong technical support for landslide emergency monitoring and risk assessment.
[1] |
Zhang B C, Ding X L, Werner C, et al. Dynamic Displacement Monitoring of Long-Span Bridges with a Microwave Radar Interferometer[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 138: 252-264. doi: 10.1016/j.isprsjprs.2018.02.020
|
[2] |
Nolesini T, Frodella W, Bianchini S, et al. Detecting Slope and Urban Potential Unstable Areas by Means of Multi-platform Remote Sensing Techniques: The Volterra (Italy) Case Study[J]. Remote Sensing, 2016, 8(9): 746. doi: 10.3390/rs8090746
|
[3] |
Lombardi L, Nocentini M, Frodella W, et al. The Calatabiano Landslide (Southern Italy): Preliminary GB-InSAR Monitoring Data and Remote 3D Mapping[J]. Landslides, 2017, 14(2): 685-696. doi: 10.1007/s10346-016-0767-6
|
[4] |
Alberto M, Joaquim F. Monitoring Structural Changes and Stability of the Snow Cover with a Ground-Based Synthetic Aperture Rada[J]. Business Insider, 2006, DOI: http://www.dspace.cam.ac.uk/handle/1810/487.
|
[5] |
刘国祥, 张波, 张瑞, 等. 联合卫星SAR和地基SAR的海螺沟冰川动态变化及次生滑坡灾害监测[J]. 武汉大学学报(信息科学版), 2019, 44(7): 980-995. doi: 10.13203/j.whugis20190077
Liu Guoxiang, Zhang Bo, Zhang Rui, et al. Monitoring Dynamics of Hailuogou Glacier and the Secondary Landslide Disasters Based on Combination of Satellite SAR and Ground-Based SAR[J]. Geomatics and Information Science of Wuhan University, 2019, 44(7): 980-995. doi: 10.13203/j.whugis20190077
|
[6] |
杨红磊, 彭军还, 崔洪曜. GB-InSAR监测大型露天矿边坡形变[J]. 地球物理学进展, 2012, 27(4): 1804-1811. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201204065.htm
Yang Honglei, Peng Junhuan, Cui Hongyao. Slope of Large-Scale Open-Pit Mine Monitoring Deformations by Using Ground-Based Interferometry[J]. Progress in Geophysics, 2012, 27(4): 1804-1811. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201204065.htm
|
[7] |
Del Ventisette C, Intrieri E, Luzi G, et al. Using Ground Based Radar Interferometry During Emergency: The Case of the A3 Motorway (Calabria Region, Italy) Threatened by a Landslide[J]. Natural Hazards and Earth System Sciences, 2011, 11(9): 2483-2495. doi: 10.5194/nhess-11-2483-2011
|
[8] |
李兵权, 李永生, 姜文亮, 等. 基于地基真实孔径雷达的边坡动态监测研究与应用[J]. 武汉大学学报(信息科学版), 2019, 44(7): 1093-1098. doi: 10.13203/j.whugis20190049
Li Bingquan, Li Yongsheng, Jiang Wenliang, et al. Research and Application of Slope Dynamic Monitoring Based on Ground-Based Real Aperture Radar[J]. Geomatics and Information Science of Wuhan University, 2019, 44(7): 1093-1098. doi: 10.13203/j.whugis20190049
|
[9] |
Caduff R, Schlunegger F, Kos A, et al. A Review of Terrestrial Radar Interferometry for Measuring Surface Change in the Geosciences[J]. Earth Surface Processes and Landforms, 2015, 40(2): 208-228. doi: 10.1002/esp.3656
|
[10] |
Iannini L, Guarnieri A M. Atmospheric Phase Screen in Ground-Based Radar: Statistics and Compensation[J]. IEEE Geoscience and Remote Sensing Letters, 2011, 8(3): 537-541. doi: 10.1109/LGRS.2010.2090647
|
[11] |
Butt J, Wieser A, Conzett S. Intrinsic Random Functions for Mitigation of Atmospheric Effects in Ground Based Radar Interferometry[C]//JISDM, Vienna, Austria, 2016.
|
[12] |
Yu C, Li Z H, Penna N T. Interferometric Synthetic Aperture Radar Atmospheric Correction Using a GPS-Based Iterative Tropospheric Decomposition Model[J]. Remote Sensing of Environment, 2018, 204: 109-121. doi: 10.1016/j.rse.2017.10.038
|
[13] |
Yu C, Penna N T, Li Z H. Generation of Real-Time Mode High-Resolution Water Vapor Fields from GPS Observations[J]. Journal of Geophysical Research: Atmospheres, 2017, 122(3): 2008-2025. doi: 10.1002/2016JD025753
|
[14] |
Rödelsperger S. Real-time Processing of Ground Based Synthetic Aperture Radar (GB-SAR) Measurements[M]. Fachbereich Bauingenieurwesen und Geodäsie: Technische Universität Darmstadt, 2011.
|
[15] |
Chao B T, Lai T, Zhang D H, et al. An Overview of Atmospheric Correction for GB-SAR[C]//The 19th International Conference on Communication Technology (ICCT), Xi'an, China, 2019.
|
[16] |
Noferini L, Pieraccini M, Mecatti D, et al. Permanent Scatterers Analysis for Atmospheric Correction in Ground-Based SAR Interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(7): 1459-1471. doi: 10.1109/TGRS.2005.848707
|
[17] |
Pipia L, Fabregas X, Aguasca A, et al. Atmospheric Artifact Compensation in Ground-Based DInSAR Applications[J]. IEEE Geoscience and Remote Sensing Letters, 2008, 5(1): 88-92. doi: 10.1109/LGRS.2007.908364
|
[18] |
Rödelsperger S, Läufer G, Gerstenecker C, et al. Monitoring of Displacements with Ground-Based Microwave Interferometry: IBIS-S and IBIS-L[J]. Journal of Applied Geodesy, 2010, 4(1): 41-54.
|
[19] |
徐亚明, 周校, 王鹏, 等. GB-SAR构建永久散射体网改正气象扰动方法[J]. 武汉大学学报(信息科学版), 2016, 41(8): 1007-1012. doi: 10.13203/j.whugis20140507
Xu Yaming, Zhou Xiao, Wang Peng, et al. A Method of Constructing Permanent Scatterers Network to Correct the Meteorological Disturbance by GB-SAR[J]. Geomatics and Information Science of Wuhan University, 2016, 41(8): 1007-1012. doi: 10.13203/j.whugis20140507
|
[20] |
黄其欢, 岳建平. 基于稳定点加权的GBSAR大气扰动校正方法[J]. 西南交通大学学报, 2017, 52(1): 202-208. doi: 10.3969/j.issn.0258-2724.2017.01.028
Huang Qihuan, Yue Jianping. GBSAR Atmospheric Turbulence Calibration Based on Weighted Stable Points[J]. Journal of Southwest Jiaotong University, 2017, 52(1): 202-208. doi: 10.3969/j.issn.0258-2724.2017.01.028
|
[21] |
徐亚明, 周校, 王鹏, 等. 地基雷达干涉测量的环境改正方法研究[J]. 大地测量与地球动力学, 2013, 33(3): 41-43. doi: 10.14075/j.jgg.2013.03.013
Xu Yaming, Zhou Xiao, Wang Peng, et al. Environment Correction Method of Ground-Based Radar Interferometry[J]. Journal of Geodesy and Geodynamics, 2013, 33(3): 41-43. doi: 10.14075/j.jgg.2013.03.013
|
[22] |
Iglesias R, Fabregas X, Aguasca A, et al. Atmospheric Phase Screen Compensation in Ground-Based SAR with a Multiple-Regression Model over Mountainous Regions[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(5): 2436-2449. doi: 10.1109/TGRS.2013.2261077
|
[23] |
Fàbregas X, Iglésias R, Aguasca A. A New Approach for Atmospheric Phase Screen Compensation in Ground-Based SAR over Areas with Steep Topography[C]//The 9th European Conference on Synthetic Aperture Radar, Nuremberg, Germany, 2012.
|
[24] |
白泽朝, 王彦平, 王振海, 等. 地基大视场SAR形变监测的非均匀大气相位校正方法[J]. 雷达学报, 2023, 12(1): 53-63.
Bai Zechao, Wang Yanping, Wang Zhenhai, et al. A Non-homogenous Atmospheric Compensation Method for Deformation Monitoring of Wide-Field Ground-Based SAR[J]. Journal of Radars, 2023, 12(1): 53-63.
|
[25] |
胡程, 邓云开, 田卫明, 等. 地基干涉合成孔径雷达图像非线性大气相位补偿方法[J]. 雷达学报, 2019, 8(6): 831-840.
Hu Cheng, Deng Yunkai, Tian Weiming, et al. A Compensation Method of Nonlinear Atmospheric Phase Applied for GB-InSAR Images[J]. Journal of Radars, 2019, 8(6): 831-840.
|
[26] |
Izumi Y, Zou L L, Kikuta K, et al. Corrections to "Iterative Atmospheric Phase Screen Compensation for Near-Real-Time Ground-Based InSAR Measurements over a Mountainous Slope"[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 9100101.
|
[27] |
Deng Y K, Hu C, Tian W M, et al. A Grid Partition Method for Atmospheric Phase Compensation in GB-SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5206713.
|
[28] |
徐进军, 石风淼, 覃劭峰, 等. 应用GB-SAR监测链子崖危岩体的试验研究[J]. 测绘地理信息, 2018, 43(2): 53-56.
Xu Jinjun, Shi Fengmiao, Qin Shaofeng, et al. Application of GB-SAR in the Monitoring of Lianziya Rock Body[J]. Journal of Geomatics, 2018, 43(2): 53-56.
|
[29] |
郭旭东, 洪瑞凯, 涂晋升, 等. 基于BP神经网络的GB-SAR大气改正模型[J]. 测绘科学技术, 2018(4): 374-386.
Guo Xudong, Hong Ruikai, Tu Jinsheng, et al. A GB-SAR Atmospheric Correction Model Based on BP Neural Network[J]. Geomatics Science and Technology, 2018(4): 374-386.
|
[30] |
Yu C, Li Z H, Penna N T. Triggered Afterslip on the Southern Hikurangi Subduction Interface Following the 2016 Kaikōura Earthquake from InSAR Time Series with Atmospheric Corrections[J]. Remote Sensing of Environment, 2020, 251: 112097.
|
[31] |
Chen Y H, Li Z H, Bai L, et al. Successful Applications of Generic Atmospheric Correction Online Service for InSAR (GACOS) to the Reduction of Atmospheric Effects on InSAR Observations s[J]. Journal of Geodesy and Geoinformation Science, 2021, 4(1): 109-115.
|
[32] |
Singh S, Raju A, Banerjee S. Detecting Slow-Moving Landslides in Parts of Darjeeling‑Sikkim Himalaya, NE India: Quantitative Constraints from PSInSAR and Its Relation to the Structural Discontinuities[J]. Landslides, 2022, 19(10): 2347-2365.
|
[33] |
Tang W, Zhao X J, Motagh M, et al. Land Subsiden‑ ce and Rebound in the Taiyuan Basin, Northern China, in the Context of Inter-basin Water Transfer and Groundwater Management[J]. Remote Sensing of Environment, 2022, 269: 112792.
|
[34] |
Hu Y, Liu L, Wang X W, et al. Quantification of Permafrost Creep Provides Kinematic Evidence for Classifying a Puzzling Periglacial Landform[J]. Earth Surface Processes and Landforms, 2021, 46(2): 465-477.
|
[35] |
Fan X M, Xu Q, Alonso-Rodriguez A, et al. Successive Landsliding and Damming of the Jinsha River in Eastern Tibet, China: Prime Investigation, Early Warning, and Emergency Response[J]. Landslides, 2019, 16(5): 1003-1020.
|
[36] |
Cui Y L, Bao P P, Xu C, et al. A Big Landslide on the Jinsha River, Tibet, China: Geometric Characteristics, Causes, and Future Stability[J]. Natural Hazards, 2020, 104(3): 2051-2070.
|
[37] |
许强, 郑光, 李为乐, 等. 2018年10月和11月金沙江白格两次滑坡-堰塞堵江事件分析研究[J]. 工程地质学报, 2018, 26(6): 1534-1551. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201806016.htm
Xu Qiang, Zheng Guang, Li Weile, et al. Study on Successive Landslide Damming Events of Jinsha River in Baige Village on Octorber 11 and November 3, 2018[J]. Journal of Engineering Geology, 2018, 26(6): 1534-1551. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201806016.htm
|
[38] |
Hanssen R F. Radar Interferometry: Data Interpretation and Error Analysis[M]. Dordrecht: Springer Netherlands, 2001.
|
[39] |
Wang Z, Li Z H, Mills J. Modelling of Instrument Repositioning Errors in Discontinuous Multi-campaign Ground-Based SAR (MC-GBSAR) Deformation Monitoring[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 157: 26-40.
|
[40] |
Crosetto M, Monserrat O, Luzi G, et al. Discontinuous GBSAR Deformation Monitoring[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 93: 136-141.
|
[41] |
Misme P. Effects of the Troposphere on Radio-Communications[J]. Annales Des Télécommunications, 1980, 35(7): 298-299.
|
[42] |
Wang A Z. Ground-Based Synthetic Aperture Radar (GBSAR) Interferometry for Deformation Monitoring[D]. Newcastle upon Tyne: Newcastle University, 2019.
|
[43] |
Yu C, Li Z H, Penna N T, et al. Generic Atmospheric Correction Model for Interferometric Synthetic Aperture Radar Observations[J]. Journal of Geophysical Research: Solid Earth, 2018, 123(10): 9202-9222.
|
[44] |
Wang Z, Li Z H, Liu Y X, et al. A New Processing Chain for Real-Time Ground-Based SAR (RT-GBSAR) Deformation Monitoring[J]. Remote Sensing, 2019, 11(20): 2437.
|
[45] |
Hooper A. A Statistical-Cost Approach to Unwrapping the Phase of InSAR Time Series s[C]//International Workshop on ERS SAR Interferometry, Frascati, Italy, 2012.
|
[46] |
Wang Z, Li Z H, Mills J P. A New Nonlocal Method for Ground-Based Synthetic Aperture Radar Deformation Monitoring[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(10): 3769-3781.
|
[47] |
Li Y S, Jiao Q S, Hu X H, et al. Detecting the Slope Movement After the 2018 Baige Landslides Based on Ground-Based and Space-Borne Radar Observations[J]. International Journal of Applied Earth Observation and Geoinformation, 2020, 84: 101949.
|