ZHENG Shunyi. Human Motion Capture from Video Sequences[J]. Geomatics and Information Science of Wuhan University, 2004, 29(4): 359-362.
Citation: ZHENG Shunyi. Human Motion Capture from Video Sequences[J]. Geomatics and Information Science of Wuhan University, 2004, 29(4): 359-362.

Human Motion Capture from Video Sequences

More Information
  • Received Date: January 14, 2004
  • Published Date: April 04, 2004
  • This paper developes a general software to acquire arbitrary motion from a video sequence. A general 3D articulate human model with changeable size, color and surface shape is prepared. This model is then driven either automatically or manually to match with the moving body in the consecutive image frames. This matching starts from key frames that contain key poses. A specific orientation interpolation is used to get the motion status in in-between frames and finally a smooth motion is obtained. This method is suitable for personal use to meet wide needs of human motion acquisition.
  • Related Articles

    [1]LI Yanjie, YANG Yuanxi, HE Haibo. Effects Analysis of Constraints on GNSS/INS Integrated Navigation[J]. Geomatics and Information Science of Wuhan University, 2017, 42(9): 1249-1255. DOI: 10.13203/j.whugis20150526
    [2]LI Yongming, GUI Qingming, GU Yongwei, HAN Songhui. The Biased Kalman Filter and Algorithm[J]. Geomatics and Information Science of Wuhan University, 2016, 41(7): 946-951. DOI: 10.13203/j.whugis20140072
    [3]LI Zengke, WANG Jian, GAO Jingxiang, TAN Xinglong. A Method to Prevent GPS / INS Integrated Navigation Filtering Divergence Based on SVM[J]. Geomatics and Information Science of Wuhan University, 2013, 38(10): 1216-1220.
    [4]HE Zhengbin, NIE Jianliang, WU Fumei, ZHANG Juqing. Kalman Filtering Algorithm Based on Random Design Matrices with Application to Integrated GNSS/INS Navigation[J]. Geomatics and Information Science of Wuhan University, 2012, 37(9): 1036-1040.
    [5]WU Fumei, NIE Jianliang, HE Zhengbin. Classified Adaptive Filtering to GPS/INS Integrated Navigation Based on Predicted Residuals and Selecting Weight Filtering[J]. Geomatics and Information Science of Wuhan University, 2012, 37(3): 261-264.
    [6]WU Fumei, YANG Yuanxi, CUI Xianqiang. Application of Adaptive Factor Based on Partial State Discrepancy in Tight Coupled GPS/INS Integration[J]. Geomatics and Information Science of Wuhan University, 2010, 35(2): 156-159.
    [7]HE Dian, YUAN Yunbin, CHAI Yanju. On Adapting Kalman Filtering for Adjusting Observation Noise Covariance in GPS/INS Integration[J]. Geomatics and Information Science of Wuhan University, 2008, 33(8): 838-841.
    [8]XIAO Jinli, PAN Zhengfeng, HUANG Shengxiang. Data Synchronization Method of GPS/INS Integrated Navigation System[J]. Geomatics and Information Science of Wuhan University, 2008, 33(7): 715-717.
    [9]GAO Weiguang, YANG Yuanxi, ZHANG Shuangcheng. GPS/INS Adaptive Filtering Considering the Influences of Kinematic Model Errors[J]. Geomatics and Information Science of Wuhan University, 2008, 33(2): 191-194.
    [10]SUN Hongxing, YAN Li, JIANG Weiping. Accurately Calculating Exterior Orientation Elements of Airborne TLS Using Kalman Filter to Process the New Combination of GPS Double-Difference Carrier Phase and Doppler/INS Data[J]. Geomatics and Information Science of Wuhan University, 2004, 29(7): 642-645.

Catalog

    Article views (697) PDF downloads (163) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return