Zhang Zhenglu, Jin Guosheng, Li Qingquan. Study on Automatic Inferring and Linking of Mine Rock Boundary Lines[J]. Geomatics and Information Science of Wuhan University, 1994, 19(3): 204-209.
Citation: Zhang Zhenglu, Jin Guosheng, Li Qingquan. Study on Automatic Inferring and Linking of Mine Rock Boundary Lines[J]. Geomatics and Information Science of Wuhan University, 1994, 19(3): 204-209.

Study on Automatic Inferring and Linking of Mine Rock Boundary Lines

More Information
  • Received Date: November 01, 1993
  • Published Date: March 04, 1994
  • How to infer and link mine rock boundary lines is a key problem by the computer aided mapping in geological graphics of underground mine.Using artificial intelligence technique this problem has been resolved and a Automatic Inferring and Linking System of Mine Rock Boundary Lines(AISMB)is developed.The data structure,expression of knowledge,the inferring and linking procedure and methode,the realization of AISMB,etc are discussed in this paper.
  • Related Articles

    [1]WANG Chang, ZHANG Yongsheng, WANG Xu. SAR Image Change Detection Based on Variational Method and Markov Random Field Fuzzy Local Information C-Means Clustering Method[J]. Geomatics and Information Science of Wuhan University, 2021, 46(6): 844-851. DOI: 10.13203/j.whugis20190167
    [2]ZHENG Zhaobao, PAN Li, ZHENG Hong. A Method of Image Texture Texton Classification with Markov Random Field[J]. Geomatics and Information Science of Wuhan University, 2017, 42(4): 463-467. DOI: 10.13203/j.whugis20150615
    [3]Lin Da, Xu Xin, Pan Xuefeng, Zhang Haitao. Segmentation of SAR Image of MSTAR SAR Chips Based on Attributed Scattering Center Feature and Markov Random Field[J]. Geomatics and Information Science of Wuhan University, 2014, 39(11): 1314-1317.
    [4]YU Changhui, YI Yaohua. Object-based Road Extraction in Remote Sensing Image Using Markov Random Field[J]. Geomatics and Information Science of Wuhan University, 2011, 36(5): 544-547.
    [5]ZHANG Bin, YANG Ran, XIE Xing, QIN Qianqing. Classification of Fully Polarimetric SAR Image Based on Polarimetric Target Decomposition and Wishart Markov Random Field[J]. Geomatics and Information Science of Wuhan University, 2011, 36(3): 297-300.
    [6]ZHENG Chen, WANG Leiguang, HU Yijun, QIN Qianqing. Texture Segmentation Based on Multiscale Fuzzy Markov Random Field Model in Wavelet Domain[J]. Geomatics and Information Science of Wuhan University, 2010, 35(9): 1074-1078.
    [7]GONG Yan, SHU Ning. Texture Segmentation of Multispectral Remote Sensing Image Based on Markov Random Field[J]. Geomatics and Information Science of Wuhan University, 2007, 32(3): 213-215.
    [8]ZHENG Zhaobao, ZHENG Hong. The Decision of the Optimal Parameters in Markov Random Fields of Images by Genetic Algorithm[J]. Geomatics and Information Science of Wuhan University, 2000, 25(3): 221-225.
    [9]Zheng Hong, Zheng Zhaobao. The Knowledge Acquisition Based on Markov Random Field for Aeroimage Understanding[J]. Geomatics and Information Science of Wuhan University, 1997, 22(4): 314-317.
    [10]Huang Guilan, Zheng Zhaobao. A Method of Image Texture Classification Based on Markov Random Field[J]. Geomatics and Information Science of Wuhan University, 1996, 21(3): 232-236,241.

Catalog

    Article views (795) PDF downloads (190) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return