HU Minzhang, LI Jiancheng, JIN Taoyong. Bathymetry Inversion with Gravity-Geologic Method in Emperor Seamount[J]. Geomatics and Information Science of Wuhan University, 2012, 37(5): 610-612.
Citation: HU Minzhang, LI Jiancheng, JIN Taoyong. Bathymetry Inversion with Gravity-Geologic Method in Emperor Seamount[J]. Geomatics and Information Science of Wuhan University, 2012, 37(5): 610-612.

Bathymetry Inversion with Gravity-Geologic Method in Emperor Seamount

Funds: 国家863计划资助项目(2009AA121402);;国家自然科学基金资助项目(41074014)
More Information
  • Received Date: March 14, 2012
  • Published Date: May 04, 2012
  • The principle of bathymetry inversion with GGM method was discussed,the detailed calculate process was presented,and the bathymetry in south of Emperor Seamount was calculated.The accuracy of GGM bathymetry is better than ETOPO2 through the comparison with vessel depth data.Compared with classical methods,GGM method does not need to introduce a prior bathymetry model and take into account the isostasy of the seabed.The model is simple and easy to calculate.
  • Related Articles

    [1]LIU Ying, WU Lixin, YUE Hui. Spatial Distribution Characteristics Analysis of Soil Moisture in Desertification Mining Areas Based on Gradient-Based Structural Similarity[J]. Geomatics and Information Science of Wuhan University, 2018, 43(1): 87-93. DOI: 10.13203/j.whugis20160216
    [2]YANG Jing, CHENG Changxiu, LI Xiaolan, CHEN Chi. A Similarity Evaluation Method on Spatial Patterns of Network Structures: A Case Study About Beijing Traffic-network Backbones from 1938 to 2014[J]. Geomatics and Information Science of Wuhan University, 2016, 41(12): 1593-1598. DOI: 10.13203/j.whugis20140569
    [3]LIU Tao, DU Qingyun, MAO Haichen. Spatial Similarity Assessment Model and Its Application in Line Groups[J]. Geomatics and Information Science of Wuhan University, 2012, 37(8): 992-995.
    [4]MENG Nina, AI Tinghua, ZHOU Xiaodong. Similarity Calculation of Adjacency Relation for Building Group[J]. Geomatics and Information Science of Wuhan University, 2012, 37(7): 775-779.
    [5]LIU Pengcheng, LUO Jing, AI Tinghua, LI Chang. Evaluation Model for Similarity Based on Curve Generalization[J]. Geomatics and Information Science of Wuhan University, 2012, 37(1): 114-117.
    [6]LIU Tao, DU Qingyun, YAN Haowen. Spatial Similarity Assessment of Point Clusters[J]. Geomatics and Information Science of Wuhan University, 2011, 36(10): 1149-1153.
    [7]ZANG Tianning, YUN Xiaochun, ZHANG Yongzheng, MEN Chaoguang. A Botnet Migration Analyzer Based on the C-F Model[J]. Geomatics and Information Science of Wuhan University, 2010, 35(5): 622-625.
    [8]TANG Luliang, YANG Bisheng, XU Kaiming. The Road Data Change Detection Based on Linear Shape Similarity[J]. Geomatics and Information Science of Wuhan University, 2008, 33(4): 367-370.
    [9]DU Peijun, TANG Hong, FANG Tao. Algorithms for Spectral Similarity Measure in Hyperspectral RS[J]. Geomatics and Information Science of Wuhan University, 2006, 31(2): 112-115.
    [10]Li Linhui, Wang Yu, Liu Yueyan, Li Lei, Huang Jincheng, Zhou Yi, Cao Songlin. A Fast Fusion Model for Multi-Source Heterogeneous Data Of Real Estate Based on Feature Similarity[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20220742

Catalog

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return