LIU Ying, WU Lixin, YUE Hui. Spatial Distribution Characteristics Analysis of Soil Moisture in Desertification Mining Areas Based on Gradient-Based Structural Similarity[J]. Geomatics and Information Science of Wuhan University, 2018, 43(1): 87-93. DOI: 10.13203/j.whugis20160216
Citation: LIU Ying, WU Lixin, YUE Hui. Spatial Distribution Characteristics Analysis of Soil Moisture in Desertification Mining Areas Based on Gradient-Based Structural Similarity[J]. Geomatics and Information Science of Wuhan University, 2018, 43(1): 87-93. DOI: 10.13203/j.whugis20160216

Spatial Distribution Characteristics Analysis of Soil Moisture in Desertification Mining Areas Based on Gradient-Based Structural Similarity

Funds: 

The National Natural Science Foundation of China 41401496

the China Postdoctoral Science Foundation 2016M592815

More Information
  • Author Bio:

    LIU Ying, PhD, specializes in monitoring the change of environment by remote sensing. E-mail: liuying712100@163.com

  • Corresponding author:

    YUE Hui, PhD. E-mail: 13720559861@163.com

  • Received Date: October 31, 2016
  • Published Date: January 04, 2018
  • Soil moisture is the key element in study of underground coal mining disturbance in desert mining area. The Shendong Mining area, a typical desert mining area, and was selected as the research region. Temperature vegetation dryness index (TVDI), acquired from the bi-parabolic NDVI-Ts space, was applied to monitor the soil moisture conditions in Shendong mining area based on the MODIS data from 2000 to 2015. The Gradient-based structural similarity (GSSIM) method was applied to quantitatively analyze the spatial distribution of soil moisture in Shendong mining area over the past 16 years. The results show that the change of soil moisture has distinct temporal and spatial heterogeneity characteristics in the Shendong mining area, specifically expressed as follows:(1) there was a gradually increasing trend of soil moisture from the northwest to the southeast; while the drought area dropped from 96.03% in 2000 to 59.59% in 2015;(2) soil moisture mutated in most of mining area, accounting for 60.08% of the total area from 2000 to 2015, and 49.87% of the vegetation cover in the mutated area showed significant betterment, as the soil moisture apparently improved. About 35.18% of the area showed changes in soil moisture while 28.13% of the vegetation cover improved with increased soil moisture. Soil moisture, in only 4.75% of the mining area, did not change significantly. The spatio-temporal distribution of soil moisture are influenced by landforms and underlying surfaces.
  • [1]
    Han Yang, Wang Yeqiao, Zhao Yunsheng. Estimating Soil Moisture Conditions of the Greater Changbai Mountains by Land Surface Temperature and NDVI[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(6):2509-2515 doi: 10.1109/TGRS.2010.2040830
    [2]
    胡娅敏, 丁一汇, 廖菲.土壤湿度资料同化对中国东部夏季区域气候模拟的改进[J].科学通报, 2009, 54(16):2388-2394 http://kns.cnki.net/KCMS/detail/detail.aspx?filename=kxtb200916020&dbname=CJFD&dbcode=CJFQ

    Hu Yamin, Ding Yihui, Liao Fei. An Improvement on Summer Regional Climate Simulation over East China:Importance of Data Assimilation of Soil Moisture[J]. Chinese Sci Bull, 2009, 54(16):2388-2394 http://kns.cnki.net/KCMS/detail/detail.aspx?filename=kxtb200916020&dbname=CJFD&dbcode=CJFQ
    [3]
    卞正富, 雷少刚, 常鲁群, 等.基于遥感影像的荒漠化矿区土壤含水率的影响因素分析[J].煤炭学报, 2009, 34(4):520-525 http://edu.wanfangdata.com.cn/Periodical/Detail/kjdb201135011

    Bian Zhengfu, Lei Shaogang, Chang Luqun, et al. Affecting Factors Analysis of Soil Moisture for Arid Mining Area Based on TM Images[J]. Journal of China Coal Society, 2009, 34(4):520-525 http://edu.wanfangdata.com.cn/Periodical/Detail/kjdb201135011
    [4]
    Bindlish R, Jackson T J, Gasiewski A J, et al. Soil Moisture Mapping and AMSR-E Validation Using the PSR in SMEX02[J].Remote Sensing of Environment, 2006, 103(2):127-139 doi: 10.1016/j.rse.2005.02.003
    [5]
    Weihermuller L, Jadoon K Z. Mapping Field-Scale Soil Moisture with L-Band Radiometer and Ground-Penetrating Radar over Bare Soil[J].IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(8):2863-2875 doi: 10.1109/TGRS.2011.2114890
    [6]
    Sandholt I, Rasmussen K, Andersen J. A Simple Interpretation of the Surface Temperature/Vegetation Index Space for Assessment of Soil Moisture Status[J]. Remote Sensing of Environment, 2002, 79(2):213-224 http://www.docin.com/p-1155858698.html
    [7]
    Liu Ying, Wu Lixin, Yue Hui. Bi-parabolic NDVI-Ts Space and Soil Moisture Remote Sensing in an Arid and Semi-arid Area[J]. Canadian Journal of Remote Sensing, 2015, 41(3):159-169 doi: 10.1080/07038992.2015.1065705
    [8]
    白雪娇, 王鹏新, 解毅, 等.基于结构相似度的关中平原旱情空间分布特征[J].农业机械学报, 2015, 46(6):345-351 http://www.doc88.com/p-9913459266326.html

    Bai Xuejiao, Wang Pengxin, Xie Yi, et al. Spatial Distribution Characteristics of Droughts in Guanzhong Plain Based on Structural Similarity[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(6):345-351 http://www.doc88.com/p-9913459266326.html
    [9]
    杨春玲, 旷开智, 陈冠豪, 等.基于梯度的结构相似度的图像质量评价方法[J].华南理工大学学报(自然科学版), 2006, 34(9):23-25 http://edu.wanfangdata.com.cn/Periodical/Detail/jsjkx201406057

    Yang Chunling, Kuang Kaizhi, Chen Guanhao, et al. Gradient-Based Structural Similarity for Image Quality Assessment[J]. Journal of South China University of Technology (Natural Science Edition), 2006, 34(9):23-25 http://edu.wanfangdata.com.cn/Periodical/Detail/jsjkx201406057
    [10]
    马保东, 吴立新, 刘英, 等.基于MODIS的神东矿区土壤湿度变化监测[J].科技导报, 2011, 29(35):45-49 doi: 10.3981/j.issn.1000-7857.2011.35.007

    Ma Baodong, Wu Lixin, Liu Ying, et al. Soil Moisture Monitoring in Shendong Mining Area Based on MOIDS Data[J]. Science & Technology Review, 2011, 29(35):45-49 doi: 10.3981/j.issn.1000-7857.2011.35.007
    [11]
    Wang Z, Bovik A C, Simoncelli E P. Image Quality Assessment:from Error Visibility to Structural Similarity[J]. IEEE Transactions on Image Processing, 2004, 13(4):600-612 doi: 10.1109/TIP.2003.819861
    [12]
    刘英, 吴立新, 马保东, 等.神东矿区土壤湿度遥感监测与双抛物线型NDVI-Ts特征空间[J].科技导报, 2011, 29(35):39-44 doi: 10.3981/j.issn.1000-7857.2011.35.006

    Liu Ying, Wu Lixin, Ma Baodong, et al. Soil Moisture Monitoring in Shendong Mining Area and Bi-parabola NDVI-Ts Space[J], Science & Technology Review, 2011, 29(35):39-44 doi: 10.3981/j.issn.1000-7857.2011.35.006
    [13]
    吴立新, 马保东, 刘善军.基于SPOT卫星NDVI数据的神东矿区植被覆盖动态变化分析[J].煤炭学报, 2009, 34(9):1216-1222 https://www.wenkuxiazai.com/doc/9a56d92269eae009581becc5-3.html

    Wu Lixin, Ma Baodong, Liu Shanjun. Analysis to Vegetation Coverage Change in Shendong Mining Area with SPOT NDVI Data[J]. Journal of China Coal Society, 2009, 34(9):1216-1222 https://www.wenkuxiazai.com/doc/9a56d92269eae009581becc5-3.html
    [14]
    谢少少, 马超, 田淑静, 等. 2000-2010年神东矿区植被NPP的变化特征及影响因素分析[J].测绘科学技术学报, 2015, 32(1):47-52 https://mall.cnki.net/qikan-NYBH200006005.html

    Xie Shaoshao, Ma Chao, Tian Shujing, et al. NPP Changes and Climate Impact of Shendong Coalfield from 2000 to 2010[J]. Journal of Geomatics Science and Technology, 2015, 32(1):47-52 https://mall.cnki.net/qikan-NYBH200006005.html
  • Related Articles

    [1]ZHOU Fangbin, XIAO Zhiwen, LIU Xuejun, MA Guowei, ZHANG Shanshan. Mountain Peak Extraction of Grid DEM Based on Aspect Distribution Feature[J]. Geomatics and Information Science of Wuhan University, 2024, 49(3): 419-425. DOI: 10.13203/j.whugis20210479
    [2]BIAN Weiwei, WU Jicang, ZHANG Lei, GAO Yu. Temporal and Spatial Statistical Analysis of Strong Earthquakes and Spatial Distribution Characteristics of InSAR Coseismic Deformation Field[J]. Geomatics and Information Science of Wuhan University, 2022, 47(6): 875-886. DOI: 10.13203/j.whugis20220176
    [3]WANG Haiqi, CHEN Ran, WEI Shiqing, GUI Li, FEI Tao. Mining Emotional Geography Features Based on Chinese Weibo Data[J]. Geomatics and Information Science of Wuhan University, 2020, 45(5): 699-708. DOI: 10.13203/j.whugis20180138
    [4]YANG Jing, CHENG Changxiu, LI Xiaolan, CHEN Chi. A Similarity Evaluation Method on Spatial Patterns of Network Structures: A Case Study About Beijing Traffic-network Backbones from 1938 to 2014[J]. Geomatics and Information Science of Wuhan University, 2016, 41(12): 1593-1598. DOI: 10.13203/j.whugis20140569
    [5]YANG Xiguang, HUANG Haijun, LIU Yanxia, YAN Liwen. Direction Characteristic of Radiation Energy and Transmission Characteristic of Waters at Water-air Surface[J]. Geomatics and Information Science of Wuhan University, 2013, 38(8): 1003-1008.
    [6]GUO Yangjie, HONG Song, ZHUANG Yanhua, FENG Nan. Temporal Variation and Spatial Distribution of Atmospheric Aerosols over Hubei Province[J]. Geomatics and Information Science of Wuhan University, 2010, 35(11): 1381-1385.
    [7]SUN Jianguo, AI Tinghua, WANG Pei, ZHAO Chuanyan. Assessing Vegetation Degradation Based on NDVI-climate Variables Feature Space[J]. Geomatics and Information Science of Wuhan University, 2008, 33(6): 573-576.
    [8]RUAN Zhimin, SUN Zhenbing. Spatial Information Publication Based on Oracle Spatial and SVG[J]. Geomatics and Information Science of Wuhan University, 2004, 29(2): 161-164.
    [9]LU Anmin, LI Chengming, LIN Zongjian, JIN Yimin. Spatial Distribution of Statistical Population Data[J]. Geomatics and Information Science of Wuhan University, 2002, 27(3): 301-305.
    [10]LU Yi, ZHAI Jingsheng, DU Jinghai, LI Shujun. Recognition,Measurement and Generalization for Point Cluster Features in Digital Nautical Chart[J]. Geomatics and Information Science of Wuhan University, 2001, 26(2): 133-139.
  • Cited by

    Periodical cited type(13)

    1. 徐霞,王萍,赵永俊,王丽,张晨旭. 基于TVDI的矿区土壤湿度反演及地形因子影响分析. 水利信息化. 2023(01): 40-45 .
    2. 邵天意,包斯琴,王楠,韩阿茹汗. 基于TVDI的旱情时空动态变化监测——以神东矿区为例. 灌溉排水学报. 2023(06): 59-66 .
    3. 姜铭,李剑锋,杨世琦,王永前,翁木伍且. 重庆市多源融合土壤湿度数据产品及应用分析. 遥感信息. 2023(06): 148-156 .
    4. 岳辉,朱蓉,刘英,魏嘉莉,毕银丽,姜凯升. 荒漠化露天矿土壤湿度监测模型的构建——以红沙泉矿区为例. 煤炭科学技术. 2022(02): 300-311 .
    5. 陈施施,谢涛,王超. IGBP土地覆盖升尺度及精度评价方法研究. 电子测量技术. 2022(05): 1-12 .
    6. 刘英,魏嘉莉,毕银丽,岳辉,何雪. 神东矿区生态系统服务功能评价. 煤炭学报. 2021(05): 1599-1613 .
    7. 罗开,周家喜,徐畅,贺康建,王永彬,孙国涛. 四川乌斯河大型锗铅锌矿床锗超常富集特征及其地质意义. 岩石学报. 2021(09): 2761-2777 .
    8. 侯建国,刘江,王强. 多特征联合的高光谱图像分类方法研究. 黑龙江工程学院学报. 2021(06): 1-7+21 .
    9. 陈志坤,江俊君,姜鑫维,白露,蔡之华. 一种基于改进双边滤波的鲁棒高光谱遥感图像特征提取方法. 武汉大学学报(信息科学版). 2020(04): 504-510 .
    10. 岳辉,刘英,朱蓉. 基于遥感生态指数的神东矿区生态环境变化监测. 水土保持通报. 2019(02): 101-107+114 .
    11. 徐霞,孙文彬,王振. 基于TVDI的布尔台矿区土壤湿度变化分析. 矿业科学学报. 2019(04): 285-291 .
    12. 芦家欣,汤伏全,赵军仪,闫照存. 黄土矿区开采沉陷与地表损害研究述评. 西安科技大学学报. 2019(05): 859-866 .
    13. 李晶,韩颖,杨震,苗辉,殷守强. 基于温度植被干旱指数的兖州煤田煤炭开采影响边界遥感提取. 农业工程学报. 2018(19): 258-265 .

    Other cited types(3)

Catalog

    Article views (1646) PDF downloads (227) Cited by(16)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return