BIAN Shaofeng, LI Zhaoquan, ZHAI Guojun, CHEN Yongbing. Construction of a System for Full Tensor Gravity Gradient Forward Modeling and Visualization[J]. Geomatics and Information Science of Wuhan University, 2024, 49(11): 1992-2002. DOI: 10.13203/j.whugis20240307
Citation: BIAN Shaofeng, LI Zhaoquan, ZHAI Guojun, CHEN Yongbing. Construction of a System for Full Tensor Gravity Gradient Forward Modeling and Visualization[J]. Geomatics and Information Science of Wuhan University, 2024, 49(11): 1992-2002. DOI: 10.13203/j.whugis20240307

Construction of a System for Full Tensor Gravity Gradient Forward Modeling and Visualization

More Information
  • Received Date: August 28, 2024
  • Objectives 

    To address the inflexibility and inadequacies of existing visualization tools for full-tensor gravity gradient (FTG) forward modeling, and to achieve accurate identification, classification, and interpretation of gravity gradients,a method for forward modeling FTG and constructing a visualization system based on Mathematica is proposed.

    Methods 

    First, the Mathematica algebraic system is utilized to derive the forward formula of the gradient for rectangular prisms and complete the forward calculation of the gradient tensor. Second, the forward calculation of the gradient tensor is carried out for a complex density body composed of multiple prism units. Finally, with the rich visual output and display capabilities of Mathematica, a visualization system is established for the gravity gradient calculation of typical geological models such as prisms, spheres, and inclined steps.

    Results 

    The constructed visualization system can simulate the gravity gradient response results of density bodies under different physical property parameters and provide real-time dynamic visualization display, effectively presenting the characteristics and distribution laws of the gravity gradient of the field source.

    Conclusions 

    The full tensor gravity gradient visualization system constructed based on Mathematica will provide a new means of interpretation for gravity gradient exploration data interpretation, and provide a basic platform for research workers to engage in research, scientific and technological thesis writing, and subject reporting.

  • [1]
    曾华霖. 重力梯度测量的现状及复兴[J]. 物探与化探, 1999, 23(1): 1-6.

    Zeng Hualin. Present State and Revival of Gravity Gradiometry[J]. Geophysical and Geochemical Exploration, 1999, 23(1): 1-6.
    [2]
    曾华霖. 重力场与重力勘探[M]. 北京: 地质出版社, 2005.

    Zeng Hualin. Gravity Field and Gravity Exploration[M]. Beijing: Geological Publishing House, 2005.
    [3]
    孙文珂. 重力勘查资料解释手册[M]. 北京: 地质出版社, 2017.

    Sun Wenke. Manual for Interpretation of Gravity Exploration Data[M]. Beijing: Geological Publishing House, 2017.
    [4]
    DiFrancesco D, Meyer T, Christensen A, et al. Gravity Gradiometry—Today and Tomorrow[C]//The 11th SAGA Biennial Technical Meeting and Exhibition, Swaziland, South Africa, 2009.
    [5]
    孙和平, 孙文科, 申文斌, 等. 地球重力场及其地学应用研究进展: 2020中国地球科学联合学术年会专题综述[J]. 地球科学进展, 2021, 36(5): 445-460.

    Sun Heping, Sun Wenke, Shen Wenbin, et al. Research Progress of Earth’s Gravity Field and Its Application in Geosciences—A Summary of Annual Meeting of Chinese Geoscience Union in 2020[J]. Advances in Earth Science, 2021, 36(5): 445-460.
    [6]
    孙和平. 对我国重力学未来发展的几点思考[J]. 中国科学院院刊, 2024, 39(5): 881-890.

    Sun Heping. Some Reflections on Developing Trend of Gravimetry in China[J]. Bulletin of Chinese Academy of Sciences, 2024, 39(5): 881-890.
    [7]
    DiFrancesco D. Gravity Gradiometry: Systems, Applications, and Future Prospects[C]//International Workshop on Gravity, Electrical & Magnetic Methods and Their Applications, Beijing, China, 2011.
    [8]
    宋宏伟. 冷原子重力梯度仪发展现状及趋势[J]. 光学与光电技术, 2023, 21(3): 1-14.

    Song Hongwei. Development Status and Tendency of Cold-Atom Gravity Gradiometer[J]. Optics & Optoelectronic Technology, 2023, 21(3): 1-14.
    [9]
    孟兆海,李中,徐光晶,等.航空重力仪和重力梯度仪发展情况[C]//中国地球物理学会, 安徽 合肥,2021.

    Meng Zhaohai, Li Zhong, Xu Guangjing, et al. Pre-sent Research Situtation and Development Trend of Airborne Gravimeter and Gravity Gradio-meter[C]//China Geophysical Society, Hefei, China, Anhui, 2021.
    [10]
    边少锋, 纪兵. 重力梯度仪的发展及其应用[J]. 地球物理学进展, 2006, 21(2): 660-664.

    Bian Shaofeng, Ji Bing. The Development and Application of the Gravity Gradiometer[J]. Progress in Geophysics, 2006, 21(2): 660-664.
    [11]
    王博, 李天姣, 李晓平. 水下惯性/重力梯度匹配导航综述[J]. 战术导弹技术, 2023(4): 1-12.

    Wang Bo, Li Tianjiao, Li Xiaoping. Review of Underwater Inertial/Gravity Gradient Matching Navigation[J]. Tactical Missile Technology, 2023(4): 1-12.
    [12]
    Saad A H. Understanding Gravity Gradients—A Tutorial[J]. The Leading Edge, 2006, 25(8): 942-949.
    [13]
    Tian Y, Xu H, Yu J. Comparative Study on Topography Prediction Using Gravity Anomalies and Gra⁃vity Gradient Anomalies[R]. Copernicus Meetings, Milan, Italy, 2024.
    [14]
    李广才, 李培, 姜春香, 等. 我国城市地球物理勘探方法应用进展[J]. 地球物理学进展, 2023, 38(4): 1799-1814.

    Li Guangcai, Li Pei, Jiang Chunxiang, et al. Advances of the Application of Urban Geophysical Exploration Methods in China[J]. Progress in Geophy⁃sics, 2023, 38(4): 1799-1814.
    [15]
    江东. 重力梯度测量探测地下人造空洞的研究[D]. 郑州: 信息工程大学, 2012.

    Jiang Dong. Underground Man-Made Vacancy Detection from Gravity Gradiometry[D]. Zhengzhou: Information Engineering University, 2012.
    [16]
    贤鹏飞, 纪兵, 刘备. 潜艇内人员质量对重力梯度探测影响分析[J]. 海洋测绘, 2021, 41(3): 32-36.

    Xian Pengfei, Ji Bing, Liu Bei. The Influence of the Mass of Crew on Gravity Gradient Detection in Submarine[J]. Hydrographic Surveying and Charting, 2021, 41(3): 32-36.
    [17]
    李倩倩. 海洋重力场变化与海底构造运动研究[D]. 武汉: 中国科学院精密测量科学与技术创新研究院, 2021.

    Li Qianqian. Marine Gravity Field Variation and Submarine Tectonic Activity Research[D]. Wuhan: Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, 2021.
    [18]
    吴云孙, 晁定波, 李建成, 等. 利用测高重力梯度异常反演中国南海海底地形[J]. 武汉大学学报(信息科学版), 2009, 34(12): 1423-1425.

    Wu Yunsun, Chao Dingbo, Li Jiancheng, et al. Recovery of Ocean Depth Model of South China Sea from Altimetric Gravity Gradient Anomalies[J]. Geomatics and Information Science of Wuhan University, 2009, 34(12): 1423-1425.
    [19]
    郭东美, 何慧优. 应用全张量重力梯度组合识别并提取中国南海断裂[J]. 武汉大学学报(信息科学版), 2022, 47(5): 738-746.

    Guo Dongmei, He Huiyou. Boundary Identification and Extraction of Fault Structure in the South China Sea Using Full Tensor Gravity Gradient Combination[J]. Geomatics and Information Science of Wuhan University, 2022, 47(5): 738-746.
    [20]
    纪兵, 陈良友, 边少锋. 利用重力梯度测量探测海底障碍地形的模拟研究[J]. 武汉大学学报(信息科学版), 2011, 36(4): 495-497.

    Ji Bing, Chen Liangyou, Bian Shaofeng. Simulation of Exploring Submarine Topography Based on Gravity Gradiometry[J]. Geomatics and Information Scien⁃ce of Wuhan University, 2011, 36(4): 495-497.
    [21]
    Dubey C P, Tiwari V M. Computation of the Gravity Field and Its Gradient: Some Applications[J]. Computers & Geosciences, 2016, 88: 83-96.
    [22]
    Kamto P G, Oksum E, Yap L, et al. High Precision Structural Mapping Using Advanced Gravity Processing Methods: A Case Study from the North Region of Cameroon[J]. Acta Geophysica, 2024, 72(4): 2263-2280.
    [23]
    Nagy D. The Gravitational Attraction of a Right Re⁃ctangular Prism[J]. Geophysics, 1966, 31(2): 362.
    [24]
    黄佳喜,边少锋,纪兵.航空重力梯度地形改正[J].测绘学报,2024,53(8):1540-1551.

    Huang Jiaxi, Bian Shaofeng, Ji Bing. Terrain Corrections for Airborne Gravity Gradiometry[J]. Acta Geodaetica et Cartographica Sinica, 2024,53(8):1540-1551.
    [25]
    Chen W J, Tan X L, Tenzer R. Gravity Forward Modelling Software with User-Friendly Interface[J]. Geophysical Prospecting, 2024, 72(8): 2994-3007.
    [26]
    边少锋. 符号演算系统及相关软件[J]. 物探化探计算技术, 1999, 21(3): 257-260.

    Bian Shaofeng. Symbolic Computation System and Its Related Softwares[J]. Computing Techniques for Giophysical and Geochenical Exploration, 1999, 21(3): 257-260.
  • Related Articles

    [1]YANG Jiuyuan, WEN Yangmao, XU Caijun. Seismogenic Fault Structure of the 2023 Ms 6.2 Jishishan (Gansu,China) Earthquake Revealed by InSAR Observations[J]. Geomatics and Information Science of Wuhan University, 2025, 50(2): 313-321. DOI: 10.13203/j.whugis20230501
    [2]LIU Bin, ZHANG Li, GE Daqing, LI Man, ZHOU Xiaolong, GUO Zhaocheng, SHI Pengqing, ZHANG Ling, JIN Dingjian, WAN Xiangxing, WANG Yu, WANG Yan. Application of InSAR Monitoring Large Deformation of Landslides Using Lutan-1 Constellation[J]. Geomatics and Information Science of Wuhan University, 2024, 49(10): 1753-1762. DOI: 10.13203/j.whugis20230478
    [3]YANG Jiuyuan, WEN Yangmao, XU Caijun. Coseismic Rupture Behavior of the 2024 Nima (Tibet) MW 6.0 Earthquake Revealed by InSAR Observations[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20240243
    [4]MAO Hongfei, XIE Lei, JIANG Kun, SUN Kai, WANG Jiageng, XU Wenbin. Source Parameter Inversion of Moderate to Strong Earthquakes and Its Comparison with Earthquake Catalogs in Tibetan Plateau based on InSAR Observations[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20240124
    [5]XU Qiang, LU Huiyan, LI Weile, DONG Xiujun, GUO Chen. Types of Potential Landslide and Corresponding Identification Technologies[J]. Geomatics and Information Science of Wuhan University, 2022, 47(3): 377-387. DOI: 10.13203/j.whugis20210618
    [6]LIU Bin, GE Daqing, WANG Shanshan, LI Man, ZHANG Ling, WANG Yan, WU Qiong. Combining Application of TOPS and ScanSAR InSAR in Large-Scale Geohazards Identification[J]. Geomatics and Information Science of Wuhan University, 2020, 45(11): 1756-1762. DOI: 10.13203/j.whugis20200259
    [7]LIU Yang, XU Caijun, WEN Yangmao. InSAR Observation of Menyuan Mw5.9 Earthquake Deformation and Deep Geometry of Regional Fault Zone[J]. Geomatics and Information Science of Wuhan University, 2019, 44(7): 1035-1042. DOI: 10.13203/j.whugis20190069
    [8]CAO Haikun, ZHAO Lihua, ZHANG Qin, QU Wei, NIE Jianliang. Ascending and Descending Orbits InSAR-GPS Data Fusion Method with Additional Systematic Parameters for Three-Dimensional Deformation Field[J]. Geomatics and Information Science of Wuhan University, 2018, 43(9): 1362-1368. DOI: 10.13203/j.whugis20160461
    [9]Yue Xijuan, Han Chunming, Dou Changyong, Zhao Yinghui. Mathematical Model of Airborne InSAR Block Adjustment[J]. Geomatics and Information Science of Wuhan University, 2015, 40(1): 59-63.
    [10]WU Yunsun, LI Zhenhong, LIU Jingnan, XU Caijun. Atmospheric Correction Models for InSAR Measurements[J]. Geomatics and Information Science of Wuhan University, 2006, 31(10): 862-867.

Catalog

    Article views (256) PDF downloads (54) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return