ZHANG Liming, LI Fei, HAO Weifeng, KE Baogui, ZHANG Chuanyin. Vertical Deviation Determination of Height Datum in Zhongshan Station Using GNSS/Gravity Method[J]. Geomatics and Information Science of Wuhan University, 2021, 46(4): 497-502. DOI: 10.13203/j.whugis20190198
Citation: ZHANG Liming, LI Fei, HAO Weifeng, KE Baogui, ZHANG Chuanyin. Vertical Deviation Determination of Height Datum in Zhongshan Station Using GNSS/Gravity Method[J]. Geomatics and Information Science of Wuhan University, 2021, 46(4): 497-502. DOI: 10.13203/j.whugis20190198

Vertical Deviation Determination of Height Datum in Zhongshan Station Using GNSS/Gravity Method

Funds: 

The National Natural Science Foundation of China 41574004

The National Natural Science Foundation of China 41531069

The National Natural Science Foundation of China 41874022

Science and Technology Innovation Talents Training Project(Youth Talents), Ministry of Natural Resources 

the National Key Research and Development Program of China 2017YFA0603102

Key Project of Scientific and Technological Cooperation of Guizhou Province [2017]3005-3

More Information
  • Author Bio:

    ZHANG Liming, PhD, professor, specializes in Earth gravitation field and the unification of global height datum. E-mail: zhanglm@casm.ac.cn

  • Corresponding author:

    HAO Weifeng, PhD, associate professor. E-mail: haowf@whu.edu.cn

  • Received Date: April 09, 2020
  • Published Date: April 04, 2021
  •   Objective  There are innumerable scientific mysteries and resources in Antarctica, which has been one of the research hotspots. Many countries and organizations are competing to establish scientific research stations in Antarctica. However, due to the lack of a unified height datum, all height-related information can not be accurately identified and unified. We attempt to determinate the vertical deviation between height datum of Zhongshan Station and Chinese1985 height datum.
      Methods  Global navigation satellite system(GNSS) geodetic boundary value problem is not restricted by local height datum, which facilitates the unification of global datum. First, the basic principles and methods of GNSS/gravity method are summarized. Then, the data of GNSS/leveling and gravity of Zhongshan Station in Antarctica are collected and introduced. Finally, the vertical deviation between the height datum of Zhongshan Station in Antarctica and Chinese1985 height datum can be calculated by two gravity field models of EGM2008 and EIGEN-6C4.
      Results  The vertical deviation between the height datum of Zhongshan Station in Antarctica and the global height datum is -1.455 m. The vertical deviation between the height datum of Zhongshan Station in Antarctica and Chinsese1985 height datum is -1.759 m.
      Conclusions  This work will provide more accurate global elevation benchmarks for Antarctic information of surveying, mapping and geographic.It is of great value for more accurate prediction of the impact of Antarctic glacier melting on low elevation areas.
  • [1]
    黄继锋, 鄂栋臣, 张胜凯, 等. 南极中山验潮站的数据处理与分析[J]. 大地测量与地球动力学, 2012, 32(5): 63-67 https://www.cnki.com.cn/Article/CJFDTOTAL-DKXB201205014.htm

    Huang Jifeng, E Dongchen, Zhang Shengkai, et al. Processing and Analysis of Tidal Data for Zhongshan Station, East Antarctica[J]. Journal of Geodesy and Geodynamics, 2012, 32(5): 63-67 https://www.cnki.com.cn/Article/CJFDTOTAL-DKXB201205014.htm
    [2]
    Heiskanen W A, Moritz H. Physical Geodesy[M]. San Fransisco : W H Freeman, 1967
    [3]
    Burša M, Kouba J, Müller A, et al. Determination of Geopotential Differences Between Local Vertical Datums and Realization of a World Height System[J]. Studia Geophysica et Geodaetica, 2001, 45(2): 127-132 doi: 10.1023/A:1021860126850
    [4]
    Zhang Liming, Li Fei, Chen Wu, et al. Height Datum Unification Between Shenzhen and Hong Kong Using the Solution of the Linearized Fixed-Gravime-tric Boundary Value Problem[J]. Journal of Geodesy, 2009, 83(5): 411-417 doi: 10.1007/s00190-008-0234-9
    [5]
    李斐, 陈武, 岳建利. GPS/重力边值问题的求解及应用[J]. 地球物理学报, 2003, 46(5): 595-599 doi: 10.3321/j.issn:0001-5733.2003.05.004

    Li Fei, Chen Wu, Yue Jianli. On Solution and Application of GPS Gravity Boundary Value Problem[J]. Chinese Journal of Geophysics, 2003, 46(5): 595-599 doi: 10.3321/j.issn:0001-5733.2003.05.004
    [6]
    Scheinert M, Ferraccioli F, Schwabe J, et al. New Antarctic Gravity Anomaly Grid for Enhanced Geodetic and Geophysical Studies in Antarctica[J]. Geophysical Research Letters, 2016, 43(2): 600-610 doi: 10.1002/2015GL067439
    [7]
    Fretwell P, Pritchard H D, Vaughan D G, et al. Bedmap2: Improved Ice Bed, Surface and Thickness Datasets for Antarctica[J]. The Cryosphere, 2013, 7(1): 375-393 doi: 10.5194/tc-7-375-2013
    [8]
    党亚民, 章传银, 晁定波, 等. 综合利用海岸带GNSS水准和重力数据精密确定中国高程基准偏差[J]. 武汉大学学报·信息科学版, 2017, 42(11): 1 644-1 648 doi: 10.13203/j.whugis20150548

    Dang Yamin, Zhang Chuanyin, Chao Dingbo, et al. Precise Determination of National Height Datum Discrepancy from Combination of GNSS/Leveling and Gravity Data in Coastal Areas of China[J]. Geomatics and Information Science of Wuhan University, 2017, 42(11): 1 644-1 648 doi: 10.13203/j.whugis20150548
    [9]
    章传银, 党亚民, 晁定波, 等. 似大地水准面的误差分析与抑制技术[J]. 测绘科学, 2006, 31(6): 26-29 https://www.cnki.com.cn/Article/CJFDTOTAL-CHKD200606004.htm

    Zhang Chuanyin, Dang Yamin, Chao Dingbo, et al. Error Analysis and Prevention Technique of Quasi-Geoid[J]. Science of Surveying and Mapping, 2006, 31(6): 26-29 https://www.cnki.com.cn/Article/CJFDTOTAL-CHKD200606004.htm
  • Related Articles

    [1]GUO Wenfei, ZHU Mengmeng, GU Shengfeng, ZUO Hongming, CHEN Jinxin. GNSS Precise Time-Frequency Receiver Clock Steering Model and Parameter Design Method[J]. Geomatics and Information Science of Wuhan University, 2023, 48(7): 1126-1133. DOI: 10.13203/j.whugis20220458
    [2]SUN Leyuan, YANG Jun, GUO Xiye, HUANG Wende. Frequency Performance Evaluation of BeiDou-3 Satellite Atomic Clocks[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20200486
    [3]WU Yiwei, YANG Bin, XIAO Shenghong, WANG Maolei. Atomic Clock Models and Frequency Stability Analyses[J]. Geomatics and Information Science of Wuhan University, 2019, 44(8): 1226-1232. DOI: 10.13203/j.whugis20180058
    [4]AN Xiangdong, CHEN Hua, JIANG Weiping, XIAO Yugang, ZHAO Wen. GLONASS Ambiguity Resolution Method Based on Long Baselines and Experimental Analysis[J]. Geomatics and Information Science of Wuhan University, 2019, 44(5): 690-698. DOI: 10.13203/j.whugis20170091
    [5]LI Mingzhe, ZHANG Shaocheng, HU Youjian, HOU Weizhen. Comparison of GNSS Satellite Clock Stability Based on High Frequency Observations[J]. Geomatics and Information Science of Wuhan University, 2018, 43(10): 1490-1495, 1503. DOI: 10.13203/j.whugis20160537
    [6]WANG Ning, WANG Yupu, LI Linyang, ZHAI Shufeng, LV Zhiping. Stability Analysis of the Space-borne Atomic Clock Frequency for BDS[J]. Geomatics and Information Science of Wuhan University, 2017, 42(9): 1256-1263. DOI: 10.13203/j.whugis20150806
    [7]LIU Zhiqiang, YUE Dongjie, WANG Hu, ZHENG Dehua. An Approach for Real-Time GPS/GLONASS Satellite Clock Estimation with GLONASS Code Inter-Frequency Biases Compensation[J]. Geomatics and Information Science of Wuhan University, 2017, 42(9): 1209-1215. DOI: 10.13203/j.whugis20150542
    [8]HUANG Guanwen, YU Hang, GUO Hairong, ZHANG Juqing, FU Wenju, TIAN Jie. Analysis of the Mid-long Term Characterization for BDS On-orbit Satellite Clocks[J]. Geomatics and Information Science of Wuhan University, 2017, 42(7): 982-988. DOI: 10.13203/j.whugis20140827
    [9]MAO Yue, CHEN Jianpeng, DAI Wei, JIA Xiaolin. Analysis of On-board Atomic Clock Stability Influences[J]. Geomatics and Information Science of Wuhan University, 2011, 36(10): 1182-1186.
    [10]GUO Hairong, YANG Yuanxi. Analyses of Main Error Sources on Time-Domain Frequency Stability for Atomic Clocks of Navigation Satellites[J]. Geomatics and Information Science of Wuhan University, 2009, 34(2): 218-221.
  • Cited by

    Periodical cited type(10)

    1. 黄观文,曹钰,谭粤,谢威. GNSS星载原子钟在轨性能评估技术进展. 测绘地理信息. 2024(01): 20-28 .
    2. 蒋春华,朱美珍,薛慧杰,刘广盛. 基于长短时记忆神经网络的Multi-GNSS卫星钟差建模预报. 大地测量与地球动力学. 2024(03): 257-262 .
    3. 艾孝军,孙大伟,贾小林,郭栋,彭腾. GNSS星载原子钟性能评估与噪声分析模型算法研究. 无线电工程. 2023(05): 1041-1051 .
    4. 李方能,梁益丰,许江宁,吴苗. BDS/GPS新型铷原子钟长期特性分析. 中国惯性技术学报. 2023(05): 452-461 .
    5. 张润哲,刘雪娇,王全喜. 基于方位导引的无人僚机着舰进近引导技术研究. 现代导航. 2023(06): 416-421 .
    6. 龚明杰. GPS与GLONASS多频组合伪距单点定位精度分析. 测绘与空间地理信息. 2022(02): 115-117+122 .
    7. 樊礼谦,焦文海,蔡洪亮,周巍,徐颖,周舒涵. 北斗三号卫星钟长期稳定性分析. 导航定位学报. 2022(04): 11-19 .
    8. 李特,张为成,王建敏,李秀海. 基于不同评价指标的北斗星载原子钟特性分析. 黑龙江工程学院学报. 2022(04): 1-7 .
    9. 伏军胜,贾小林,刘家龙,许瑾,贺延伟,张奋. BDS-3卫星与其他GNSS系统卫星原子钟性能分析. 真空与低温. 2022(05): 615-622 .
    10. 齐艳丽. 北斗星载原子钟频率稳定度评估. 科技视界. 2022(29): 83-85 .

    Other cited types(11)

Catalog

    Article views (1073) PDF downloads (93) Cited by(21)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return