QIN Fangjun, ZHANG Haibo, CHEN Hao, LI Dongyi. Research Progress on Dynamic Measurement of Cold Atom Gravimeter[J]. Geomatics and Information Science of Wuhan University, 2024, 49(11): 2016-2027. DOI: 10.13203/j.whugis20240245
Citation: QIN Fangjun, ZHANG Haibo, CHEN Hao, LI Dongyi. Research Progress on Dynamic Measurement of Cold Atom Gravimeter[J]. Geomatics and Information Science of Wuhan University, 2024, 49(11): 2016-2027. DOI: 10.13203/j.whugis20240245

Research Progress on Dynamic Measurement of Cold Atom Gravimeter

More Information
  • Received Date: July 03, 2024
  • The dynamic measurement technique based on cold atom gravimeter is distinguished from the application of relative gravimeter dynamic measurement of gravity value method, which has the outstanding advantages of high accuracy, no drift, long-term stable measurement, etc. However, the gravimeter from the static bench experiment to the dynamic measurement in the field is still affected by multiple factors such as the volume, the dead time, the noise, and so on. This paper summarizes the research progress of the dynamic measurement technology of cold atom gravimeter at home and abroad. First, it discusses the basic principle of cold atom gravimeter, analyzes the miniaturization and inertial stabilization platform, vibration isolation and damping, “dead time” compensation, combined measurement and other dynamic error suppression techniques. Second,it details some representative work carried out by the cold atom gravimeter in the integration of dynamic measurements in the land, sea, sky and space.Finally, it looks forward to the new methods and the military and other applications of cold atomic gravimeter measurement techniques.

  • [1]
    孙和平. 对我国重力学未来发展的几点思考[J]. 中国科学院院刊, 2024, 39(5): 881-890.

    Sun Heping. Some Reflections on Developing Trend of Gravimetry in China[J]. Bulletin of Chinese Academy of Sciences, 2024, 39(5): 881-890.
    [2]
    Bruss A R, Horn B K P. Passive Navigation[J]. Computer Vision, Graphics, and Image Processing, 1983, 21(1): 3-20.
    [3]
    吴燕雄, 滕云田, 吴琼, 等. 船载绝对重力仪测量系统的误差修正模型及不确定度分析[J]. 武汉大学学报(信息科学版), 2022, 47(4): 492-500.

    Wu Yanxiong, Teng Yuntian, Wu Qiong, et al. Error Correction Model and Uncertainty Analysis of the Shipborne Absolute Gravity Measurement System[J]. Geomatics and Information Science of Wuhan University, 2022, 47(4): 492-500.
    [4]
    Wang W, Gao J Y, Li D M, et al. Measurements and Accuracy Evaluation of a Strapdown Marine Gravimeter Based on Inertial Navigation[J]. Sensors, 2018, 18(11): 3902.
    [5]
    Xiong Z M, Cao J L, Wu M P, et al. A Method for Underwater Dynamic Gravimetry Combining Inertial Navigation System, Doppler Velocity Log, and Depth Gauge[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 17(8): 1294-1298.
    [6]
    Peters A, Chung K Y, Chu S. Measurement of Gravitational Acceleration by Dropping Atoms[J]. Nature, 1999, 400(6747): 849-852.
    [7]
    李安, 车浩, 覃方君, 等. 冷原子干涉重力测量技术发展展望[J]. 海军工程大学学报, 2021, 33(6): 1-7.

    Li An, Che Hao, Qin Fangjun, et al. Development and Prospect of Cold Atom Interferometry Gravimetry Measurement[J]. Journal of Naval University of Engineering, 2021, 33(6): 1-7.
    [8]
    陈乐乐, 罗覃, 邓小兵, 等. 基于原子干涉技术的精密重力测量研究[J]. 中国科学: 物理学 力学 天文学, 2016, 46(7): 21-38.

    Chen Lele, Luo Qin, Deng Xiaobing, et al. Precision Gravity Measurements with Cold Atom Interferometer[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 2016, 46(7): 21-38.
    [9]
    田桂娥, 陈晓东, 吴书清, 等. FG5绝对重力仪观测数据的实测重力潮汐改正[J]. 武汉大学学报(信息科学版), 2020, 45(6): 870-878.

    Tian Gui'e, Chen Xiaodong, Wu Shuqing, et al. Correction of Measured Gravity Tides with FG5 Absolute Gravimeter Observations[J]. Geomatics and Information Science of Wuhan University, 2020, 45(6): 870-878.
    [10]
    Kasevich M, Chu S. Atomic Interferometry Using Stimulated Raman Transitions[J]. Physical Review Letters, 1991, 67(2): 181-184.
    [11]
    Kasevich M, Chu S. Measurement of the Gravitational Acceleration of an Atom with a Light-Pulse Atom Interferometer[J]. Applied Physics B, 1992, 54: 321-332.
    [12]
    Peters A, Chung K Y, Chu S. High-Precision Gravity Measurements Using Atom Interferometry[J]. Metrologia, 2001, 38(1): 25-61.
    [13]
    Schmidt M, Senger A, Hauth M, et al. A Mobile High-Precision Absolute Gravimeter Based on Atom Interferometry[J]. Gyroscopy and Navigation, 2011, 2(3): 170-177.
    [14]
    Hu Z K, Sun B L, Duan X C, et al. Demonstration of an Ultrahigh-Sensitivity Atom-Interferometry Absolute Gravimeter[J]. Physical Review A, 2013, 88(4): 043610.
    [15]
    Zhou M K, Hu Z K, Duan X C, et al. Performance of a Cold-Atom Gravimeter with an Active Vibration Isolator[J]. Physical Review A, 2012, 86(4): 043630.
    [16]
    Zhou L, Xiong Z Y, Yang W, et al. Measurement of Local Gravity via a Cold Atom Interferometer[J]. Chinese Physics Letters, 2011, 28(1): 013701.
    [17]
    Le Gouët J, Mehlstäubler T E, Kim J, et al. Limits to the Sensitivity of a Low Noise Compact Atomic Gravimeter[J]. Applied Physics B, 2008, 92(2): 133-144.
    [18]
    Wu B, Wang Z Y, Cheng B, et al. The Investigation of a mGal-level Cold Atom Gravimeter for Field Applications[J]. Metrologia, 2014, 51(5): 452-458.
    [19]
    胡青青, 杨俊, 罗玉昆, 等. 布拉格衍射型冷原子干涉重力仪关键实验条件分析[J]. 国防科技大学学报, 2017, 39(5): 139-144.

    Hu Qingqing, Yang Jun, Luo Yukun, et al. Analysis on Key Experimental Requirements of Bragg Diffraction-Based Cold Atom Interferometry Gravimeter[J]. Journal of National University of Defense Technology, 2017, 39(5): 139-144.
    [20]
    Xie H T, Chen B, Long J B, et al. Calibration of a Compact Absolute Atomic Gravimeter[J]. Chinese Physics B, 2020, 29(9): 093701.
    [21]
    Fu Z J, Wang Q Y, Wang Z Y, et al. Participation in the Absolute Gravity Comparison with a Compact Cold Atom Gravimeter[J]. Chinese Optics Letters, 2019, 17(1): 011204.
    [22]
    dos Santos F P, Bonvalot S. Cold-Atom Absolute Gravimetry[M]//Encyclopedia of Geodesy. Cham: Springer International Publishing, 2016: 1-6.
    [23]
    Ménoret V, Vermeulen P, Le Moigne N, et al. Gravity Measurements Below 10-9 g with a Transportable Absolute Quantum Gravimeter[J]. Scientific Reports, 2018, 8(1): 12300.
    [24]
    Tan Y J, Shao C G, Hu Z K. Finite-Speed-of-Light Perturbation in Atom Gravimeters[J]. Physical Review A, 2016, 94: 013612.
    [25]
    Qi K, Xu Y Y, Deng X B, et al. Influence of Magnetic Field on the Seismometer in Vibration Correction for Atom Gravimeters[J]. Review of Scientific Instruments, 2022, 93(4): 044503.
    [26]
    Zhang J Y, Chen L L, Cheng Y, et al. Movable Precision Gravimeters Based on Cold Atom Interferometry[J]. Chinese Physics B, 2020, 29(9): 093702.
    [27]
    Castin Y, Wallis H, Dalibard J. Limit of Doppler Cooling[J]. Journal of the Optical Society of America b—Optical Physics, 1989, 6: 2046-2057.
    [28]
    Treutlein P, Chung K Y, Chu S. High-Brightness Atom Source for Atomic Fountains[J].Physical Review A, 2001, 63(5): 051401.
    [29]
    Zhou M K, Duan X C, Chen L L, et al. Micro-Gal Level Gravity Measurements with Cold Atom Interferometry[J]. Chinese Physics B, 2015, 24(5): 050401.
    [30]
    Zhou L, Xiong Z Y, Yang W, et al. Development of an Atom Gravimeter and Status of the 10-meter Atom Interferometer for Precision Gravity Measurement[J]. General Relativity and Gravitation, 2011, 43(7): 1931-1942.
    [31]
    吴彬. 高精度冷原子重力仪噪声与系统误差研究[D]. 杭州: 浙江大学, 2014.

    Wu Bin. Study on Noise and System Error of High Precision Cold Atomic Gravimeter[D]. Hangzhou: Zhejiang University, 2014.
    [32]
    周敏康. 原子干涉重力测量原理性实验研究[D]. 武汉: 华中科技大学, 2011.

    Zhou Minkang. Experimental Study on the Principle of Atomic Interference Gravity Measurement[D]. Wuhan: Huazhong University of Science and Technology, 2011.
    [33]
    Hauth M, Freier C, Schkolnik V, et al. First Gravity Measurements Using the Mobile Atom Interferometer GAIN[J]. Applied Physics B, 2013, 113(1): 49-55.
    [34]
    Kulas S, Vogt C, Resch A, et al. Miniaturized Lab System for Future Cold Atom Experiments in Microgravity[J]. Microgravity Science and Technology, 2017, 29: 37-48.
    [35]
    Wang Q Y, Wang Z Y, Fu Z J, et al. A Compact Laser System for the Cold Atom Gravimeter[J]. Optics Communications, 2016, 358: 82-87.
    [36]
    Luo Q, Zhang H, Zhang K, et al. A Compact Laser System for a Portable Atom Interferometry Gravimeter[J]. Review of Scientific Instruments, 2019, 90(4): 043104.
    [37]
    Schmidt M, Prevedelli M, Giorgini A, et al. A Portable Laser System for High-Precision Atom Interferometry Experiments[J]. Applied Physics B, 2011, 102(1): 11-18.
    [38]
    Fang J, Hu J G, Chen X, et al. Realization of a Compact One-Seed Laser System for Atom Interferometer-Based Gravimeters[J]. Optics Express, 2018, 26(2): 1586-1596.
    [39]
    Zhao Y, Wang S K, Zhuang W, et al. Raman-Laser System for Absolute Gravimeter Based on 87Rb Atom Interferometer[J]. Photonics, 2020, 7(2): 32.
    [40]
    Ge G G, Chen X, Li J T, et al. Accuracy Improvement of a Compact 85Rb Atom Gravimeter by Suppressing Laser Crosstalk and Light Shift[J]. Sensors, 2023, 23(13): 6115.
    [41]
    鱼志健, 薛文祥, 赵文宇, 等. 用于POP铷原子钟的DFB激光器自动稳频技术研究[J]. 时间频率学报, 2015, 38(3): 129-138.

    Yu Zhijian, Xue Wenxiang, Zhao Wenyu, et al. Automatic Frequency Stabilization System of DFB Diode Laser for POP Rb Atomic Clock[J]. Journal of Time and Frequency, 2015, 38(3): 129-138.
    [42]
    Dinkelaker A N, Schiemangk M, Schkolnik V, et al. Autonomous Frequency Stabilization of Two Extended-Cavity Diode Lasers at the Potassium Wavelength on a Sounding Rocket[J]. Applied Optics, 2017, 56(5): 1388.
    [43]
    Dong L, Yin W B, Ma W G, et al. A Novel Control System for Automatically Locking a Diode Laser Frequency to a Selected Gas Absorption Line[J]. Measurement Science and Technology, 2007, 18(5): 1447-1452.
    [44]
    张胤, 王青. 自动稳频半导体激光器研究[J]. 中国激光, 2014, 41(6): 0602001.

    Zhang Yin, Wang Qing. Research of Automatic Frequency Stability Diode Laser[J]. Chinese Journal of Lasers, 2014, 41(6): 0602001.
    [45]
    Li Q X, Zhang X, Zhu L X, et al. Intelligent and Automatic Laser Frequency Locking System Using Pattern Recognition Technology[J]. Optics and Lasers in Engineering, 2020, 126: 105881.
    [46]
    项静峰, 王利国, 李琳, 等. 基于DSP技术的外腔半导体激光器自动稳频系统[J]. 光学学报, 2017, 37(9): 146-154.

    Xiang Jingfeng, Wang Liguo, Li Lin, et al. Automatic Frequency Stabilization System of External Cavity Diode Laser Based on Digital Signal Processing Technology[J]. Acta Optica Sinica, 2017, 37(9): 146-154.
    [47]
    张兴平. 基于FPGA的激光稳频系统的设计与实现[D]. 西安: 西安电子科技大学, 2022.

    Zhang Xingping. Design and Implementation of Laser Frequency Stabilization System Based on FPGA[D]. Xi’an: Xidian University, 2022.
    [48]
    López-Vázquez A, Maldonado M A, Gomez E, et al. Compact Laser Modulation System for a Transportable Atomic Gravimeter[J]. Optics Express, 2023, 31(3): 3504-3519.
    [49]
    Zhang X W, Zhong J Q, Tang B, et al. Compact Portable Laser System for Mobile Cold Atom Gravimeters[J]. Applied Optics, 2018, 57(22): 6545-6551.
    [50]
    Lee J, Ding R, Christensen J, et al. A Compact Cold-Atom Interferometer with a High Data-Rate Grating Magneto-Optical Trap and a Photonic-Integrated-Circuit-Compatible Laser System[J]. Nature Communications, 2022, 13(1): 5131.
    [51]
    Abend S, Gebbe M, Gersemann M, et al. Atom-Chip Gravimeter with Bose-Einstein Condensates[D]. Hannover : Gottfried Wilhelm Leibniz Universität Hannover, 2017.
    [52]
    Bidel Y, Carraz O, Charrière R, et al. Compact Cold Atom Gravimeter for Field Applications[J]. Applied Physics Letters, 2013, 102(14): 144107.
    [53]
    Wu X J, Pagel Z, Malek B S, et al. Gravity Surveys Using a Mobile Atom Interferometer[J]. Science Advances, 2019, 5(9): eaax0800
    [54]
    Xu Y Y, Cui J F, Qi K, et al. Evaluation of the Transportable Atom Gravimeter HUST-QG[J]. Metrologia, 2022, 59(5): 055001.
    [55]
    Fang J C, Yin R, Lei X S. An Adaptive Decoupling Control for Three-Axis Gyro Stabilized Platform Based on Neural Networks[J]. Mechatronics, 2015, 27: 38-46.
    [56]
    安文, 许江宁, 吴苗, 等. 垂线偏差对CHZ-Ⅱ重力仪稳定平台姿态精度的影响[J]. 武汉大学学报(信息科学版), 2021, 46(3): 381-387.

    An Wen, Xu Jiangning, Wu Miao, et al. Influence Analysis of Vertical Deflection on Attitude Accuracy of CHZ-Ⅱ Gravimeter Stabilized Platform[J]. Geomatics and Information Science of Wuhan University, 2021, 46(3): 381-387.
    [57]
    Hensley J M, Peters A, Chu S. Active Low Frequency Vertical Vibration Isolation[J]. 1999, 70(6): 2735-2741.
    [58]
    Freier C. Measurement of Local Gravity Using Atom Interferometry[D]. Berlin :Humboldt-Universität zu, 2010.
    [59]
    Zhou M K, Xiong X, Chen L L, et al. Note: A Three-Dimension Active Vibration Isolator for Precision Atom Gravimeters[J]. 2015, 86(4): 046108.
    [60]
    Gong W B, Li A, Ma J X, et al. An Ultralow Frequency Vertical Isolation System Based on Composite Feedforward and Feedback Control[J]. IEEE Sensors Journal,2023,23(23): 29109-29118
    [61]
    Rakholia A. High Data-Rate Atom Interferometer for Measuring Dynamic Inertial Conditions[D]. New Mexico:University of New Mexico, 2015.
    [62]
    李嘉华,姜伯楠.冷原子干涉重力仪的研究进展[C]//中国惯性技术学会2019年科技工作者研讨会,云南昆明,2019.

    Li J H, Jiang B N. Research Progress of Cold Atom Interferometry Gravimeter [C]//The 2019 Scientific and Technological Workers' Symposium of China Society of Inertial Technology,Kunming,Yunnan,China,2019.
    [63]
    McGuinness H J, Rakholia A V, Biedermann G W. High Data-Rate Atom Interferometer for Measuring Acceleration[J]. Applied Physics Letters, 2012, 100(1): 011106.
    [64]
    Guo J, Ma S Q, Zhou C, et al. Vibration Compensation for a Vehicle-Mounted Atom Gravimeter[J]. IEEE Sensors Journal, 2022, 22(13): 12939-12946.
    [65]
    Zhou Y, Wang W Z, Ge G G, et al. High-Precision Atom Interferometer-Based Dynamic Gravimeter Measurement by Eliminating the Cross-Coupling Effect[J]. Sensors, 2024, 24(3): 1016.
    [66]
    Kasevich M. Precision Navigation Sensors Based on Atominterferometry[C]//Frontiers in Optics,Tucson, Arizona,USA, 2003.
    [67]
    Gong W B, Li A, Ma J X, et al. A Vibration Compensation Optimization Method for a Mobile Atomic Gravimeter[J]. Measurement Science and Technology, 2023, 34(5): 055014.
    [68]
    Qiao Z K, Yuan P, Zhang J J, et al. Error Analysis and Filtering Methods for Absolute Ocean Gravity Data[J]. IEEE Sensors Journal, 2023, 23(13): 14346-14355.
    [69]
    Antoni-Micollier L, Carbone D, Ménoret V, et al. Detecting Volcano-Related Underground Mass Changes with a Quantum Gravimeter[J]. Geophysical Research Letters, 2022, 49(13): e97814.
    [70]
    Mahadeswaraswamy C. Atom Interferometric Gravity Gradiometer: Disturbance Compensation and Mobile Gradiometry[D]. Stanford:Stanford University, 2009.
    [71]
    Müntinga H, Ahlers H, Krutzik M, et al. Interferometry with Bose-Einstein Condensates in Microgravity[J]. Physical Review Letters, 2013, 110(9): 093602.
    [72]
    Bidel Y, Zahzam N, Blanchard C, et al. Absolute Marine Gravimetry with Matter-Wave Interferometry[J]. Nature Communications, 2018, 9(1): 627.
    [73]
    Bonnin A, Bidel Y, Bernard J, et al. Marine and Airborne Gravimetry with an Absolute Cold Atom Sensor[C]// IEEE International Symposium on Inertial Sensors and Systems (INERTIAL), Avignon,France,2022.
    [74]
    Bidel Y, Zahzam N, Bresson A, et al. Absolute Airborne Gravimetry with a Cold Atom Sensor[J]. Journal of Geodesy, 2020, 94(2): 20.
    [75]
    Bidel Y, Zahzam N, Bresson A, et al. Airborne Absolute Gravimetry with a Quantum Sensor, Comparison with Classical Technologies[J]. Journal of Geophysical Research (Solid Earth), 2023, 128(4): e2022JB025921.
    [76]
    程冰, 陈佩军, 周寅, 等. 基于冷原子重力仪的绝对重力动态移动测量实验[J]. 物理学报, 2022,71(2): 247-257.

    Cheng Bing, Chen Peijun, Zhou Yin, et al. Experiment on Dynamic Absolute Gravity Measurement Based on Cold Atom Gravimeter[J]. Acta Physica Sinica, 2022,71(2): 247-257.
    [77]
    吴彬, 周寅, 程冰, 等. 基于原子重力仪的车载静态绝对重力测量[J]. 物理学报, 2020, 69(6): 25-32.

    Wu Bin, Zhou Yin, Cheng Bing, et al. Static Measurement of Absolute Gravity in Truck Based on Atomic Gravimeter[J]. Acta Physica Sinica, 2020, 69(6): 25-32.
    [78]
    吴彬, 程冰, 付志杰, 等. 大倾斜角度下基于冷原子重力仪的绝对重力测量[J]. 物理学报, 2018,67(19): 71-81.

    Wu Bin, Cheng Bing, Fu Zhijie, et al. Measurement of Absolute Gravity Based on Cold Atom Gravimeter at Large Tilt Angle[J]. Acta Physica Sinica, 2018,67(19): 71-81.
    [79]
    张旭, 颜树华, 李期学, 等. 基于冷原子重力仪的轨道移动绝对重力测量[J]. 计测技术, 2023,43(4): 128-134.

    Zhang Xu, Yan Shuhua, Li Qixue, et al. Movable Measurement of Absolute Gravity on the Rail Based on Cold Atom Gravimeter[J]. Metrology & Measurement Technology, 2023,43(4): 128-134.
    [80]
    张旭,颜树华,李期学,等. 基于车载原子干涉仪的野外流动重力测量[J]. 仪器仪表学报,2023,44(9):94-101.

    Zhang Xu, Yan Shuhua, Li Qixue, et al. Field Flow Gravity Measurement Based on Vehicle-Mounted Atomic Interferometer[J]. Chinese Journal of Scientific Instrument,2023,44(9):94-101.
    [81]
    Li Q X, Zhang X, Zhang H K, et al. Multi-scene Mobile Absolute Gravity Surveying by Developing a Vehicle-Mounted Static-Base Atom Interferometry Gravimeter[J]. Measurement, 2024, 231: 114556.
    [82]
    Zhang J Y, Xu W J, Sun S D, et al. A Car-based Portable Atom Gravimeter and Its Application in Field Gravity Survey[J]. AIP Advances, 2021, 11(11): 115223.
    [83]
    Wang H L, Wang K N, Xu Y P, et al. A Truck-Borne System Based on Cold Atom Gravimeter for Measuring the Absolute Gravity in the Field[J]. Sensors, 2022, 22(16): 6172.
    [84]
    程冰, 周寅, 陈佩军, 等. 船载系泊状态下基于原子重力仪的绝对重力测量[J]. 物理学报, 2021,70(4): 103-109.

    Cheng Bing, Zhou Yin, Chen Peijun, et al. Absolute Gravity Measurement Based on Atomic Gravimeter Under Mooring State of a Ship[J]. Acta Physica Sinica, 2021,70(4): 103-109.
    [85]
    Zhou Y, Zhang C, Chen P J, et al. A Testing Method for Shipborne Atomic Gravimeter Based on the Modulated Coriolis Effect[J].Sensors, 2023, 23(2): 881.
    [86]
    朱栋, 徐晗, 周寅, 等. 基于扩展卡尔曼滤波算法的船载绝对重力测量数据处理[J]. 物理学报, 2022,71(13): 159-167.

    Zhu Dong, Xu Han, Zhou Yin, et al. Data Processing of Shipborne Absolute Gravity Measurement Based on Extended Kalman Filter Algorithm[J]. Acta Physica Sinica, 2022,71(13): 159-167.
    [87]
    Wu B, Zhao Y P, Zhou Y, et al. Construction of Absolute Gravity Benchmark Offshore with an Atomic Gravimeter[J]. IEEE Sensors Journal, 2024, 24(15): 23527-23536.
    [88]
    车浩, 李安, 方杰, 等. 基于冷原子重力仪的船载动态绝对重力测量实验研究[J]. 物理学报, 2022,71(11): 148-156.

    Che Hao, Li An, Fang Jie, et al. Ship-Borne Dynamic Absolute Gravity Measurement Based on Cold Atom Gravimeter[J]. Acta Physica Sinica, 2022, 71(11): 148-156.
    [89]
    Ma J X, Li A, Qin F J, et al. ICEEMDAN/LOESS: An Improved Vibration-Signal Analysis Method for Marine Atomic Interferometric Gravimetry[J]. Journal of Marine Science and Engineering, 2024, 12(2): 302.
    [90]
    Che H, Li A, Zhou Z, et al. An Approach of Vibration Compensation for Atomic Gravimeter Under Complex Vibration Environment[J]. Sensors, 2023, 23(7): 3535.
    [91]
    Huang C F, Li A, Qin F J, et al. Temperature Drift Modeling and Compensation of Accelerometer Applied in Atom Gravimeter[J]. IEEE Sensors Journal, 2023, 23(23): 29053-29062.
    [92]
    Huang C F, Li A, Qin F J, et al. An Atomic Gravimeter Dynamic Measurement Method Based on Kalman Filter[J].Measurement Science and Technology, 2023, 34(1): 015013.
    [93]
    Huang C F, Li A, Qin F J. Research Progress of Dynamic Measurement Technology of Atom Gravimeter[J]. Applied Sciences, 2023, 13(15): 8774.
    [94]
    张国万, 李嘉华. 冷原子干涉技术原理及其在深空探测中的应用展望[J]. 深空探测学报, 2017, 4(1): 14-19.

    Zhang Guowan, Li Jiahua. The Principle of Cold Atom Interferometry and Its Potential Applications in Deep Space Exploration[J]. Journal of Deep Space Exploration, 2017, 4(1): 14-19.
    [95]
    Graham P W, Hogan J M, Kasevich M A, et al. New Method for Gravitational Wave Detection with Atomic Sensors[J].Physical Review Letters, 2013, 110(17): 171102.
    [96]
    Müller F, Carraz O, Visser P, et al. Cold Atom Gravimetry for Planetary Missions[J]. Planetary and Space Science, 2020, 194: 105110.
    [97]
    车浩, 李安, 覃方君, 等. 冷原子干涉动态重力测量中的噪声与系统效应分析[J]. 量子电子学报, 2023,40(5): 700-711.

    Che Hao, Li An, Qin Fangjun, et al. Analysis of Noise and System Effect in Cold Atom Interference Dynamic Gravity Measurement[J]. Chinese Journal of Quantum Electronics, 2023, 40(5): 700-711.
    [98]
    Stray B, Lamb A, Kaushik A, et al. Quantum Sensing for Gravity Cartography[J]. Nature, 2022, 602(7898): 590-594.
    [99]
    陈泺侃, 李琛阳, 郑国磊, 等. 冷原子重力仪研制与并网测试及川滇实验场监测试验[J]. 地震地磁观测与研究, 2023,44(S1): 53-56.

    Chen Luokan, Li Chenyang, Zheng Guolei, et al. Development of Cold Atom Gravimeter and Preliminary Results of a Test at Anhui and the First Deployment in the Chuandian Area[J]. Seismological and Geomagnetic Observation and Research, 2023, 44(S1): 53-56.
    [100]
    Chai S J, Fekete J, Andersen M F. Measuring the Local Gravitational Field Using Survival Resonances in a Dissipatively Driven Atom-Optics System[J]. Physical Review A, 2018, 98(6):063614.
    [101]
    Ford C T, 张宗美. 重力模型对洲际弹道导弹精度的影响[J]. 国外导弹技术, 1985(5): 12-22.

    Ford C T, Zhang Zongmei. The Impact of Gravity Models on the Accuracy of Intercontinental Ballistic Missiles [J]. Missiles and Space Vehicles, 1985(5): 12-22.
    [102]
    王群. 量子导航系统:军用导航系统的新锐[N]. 中国国防报,2017-09-29(014).

    Wang Qun. Quantum Navigation System: A Cutting-Edge Military Navigation System [N]. China National Defense News, 2017-09-29(014).
    [103]
    娄癸阳, 皮燕燕, 冯泽源. 高精度惯性导航系统的技术预见[J]. 国防科技, 2024,45(2): 44-50.

    Lou Guiyang, Pi Yanyan, Feng Zeyuan. Technical Foresight of High-Precision Inertial Navigation Systems[J]. National Defense Technology, 2024, 45(2): 44-50.
    [104]
    Chen J Y C. UAV-Guided Navigation for Ground Robot Tele-Operation in a Military Reconnaissance Environment[J]. Ergonomics, 2010, 53(8): 940-950.
  • Related Articles

    [1]LI Qingquan, CHEN Ruizhe, TU Wei, CHEN Zhipeng, ZHANG Bochen, YAN Aiguo, YIN Pengcheng. Real-Time Vision-Based Deformation Measurement of Long-Span Bridge with Inertial Sensors[J]. Geomatics and Information Science of Wuhan University, 2023, 48(11): 1834-1843. DOI: 10.13203/j.whugis20230006
    [2]TIAN Gui'e, CHEN Xiaodong, WU Shuqing, SUN Heping, BAI Lei, SANG Peng, NIU Xiaowei. Correction of Measured Gravity Tides with FG5 Absolute Gravimeter Observations[J]. Geomatics and Information Science of Wuhan University, 2020, 45(6): 870-878. DOI: 10.13203/j.whugis20180472
    [3]WU Qiong, TENG Yuntian, ZHANG Bing, HUANG Dalun. Calculation of Measurement-Height in Development of the Absolute Gravimeter[J]. Geomatics and Information Science of Wuhan University, 2017, 42(12): 1773-1778. DOI: 10.13203/j.whugis20150529
    [4]XU Rudong, LIU Jin. Real-Time Construction of Dynamic Trajectory of Measurable Video Objects and Its GIS Application[J]. Geomatics and Information Science of Wuhan University, 2016, 41(6): 818-824. DOI: 10.13203/j.whugis20140518
    [5]OUYANG Yongzhong, LU Xiuping, HUANG Motao, ZHAI Guojun. An Integrated Method for Compensating the Systematic Errors of Marine and Airborne Measurements from L&R Gravimeter[J]. Geomatics and Information Science of Wuhan University, 2011, 36(5): 625-629.
    [6]LIU Yanfang. Forewarning System of Dynamic Balance Between Cultivated Land Demands and Supplies at Multi-Measures[J]. Geomatics and Information Science of Wuhan University, 2004, 29(5): 420-425. DOI: 10.13203/j.whugis2004.05.011
    [7]LIU Dajie, FENG Yanming. Adjustment Datum for Dynamic Geodesy[J]. Geomatics and Information Science of Wuhan University, 2003, 28(S1): 69-72,109.
    [8]Zhao Shaorong. Inversion of Dynamic Geodetic Data and Its Application in the Research of Seismic Non-uniform Rupture[J]. Geomatics and Information Science of Wuhan University, 1993, 18(3): 41-48.
    [9]Zhang Xingfei. Research on the Dynamic Data Model of Deformation Measurements Across Fault[J]. Geomatics and Information Science of Wuhan University, 1992, 17(2): 79-85.
    [10]Jia Minghai. Dynamic Data Processing of the Measurement for the Deformation by Mining[J]. Geomatics and Information Science of Wuhan University, 1989, 14(2): 10-19.
  • Cited by

    Periodical cited type(0)

    Other cited types(1)

Catalog

    Article views (186) PDF downloads (45) Cited by(1)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return