Shao Zhenfeng, Bai Yun, Zhou Xiran. Improved Multi-scale Retinex Image Enhancement of UnderPoor Illumination[J]. Geomatics and Information Science of Wuhan University, 2015, 40(1): 32-39.
Citation: Shao Zhenfeng, Bai Yun, Zhou Xiran. Improved Multi-scale Retinex Image Enhancement of UnderPoor Illumination[J]. Geomatics and Information Science of Wuhan University, 2015, 40(1): 32-39.

Improved Multi-scale Retinex Image Enhancement of UnderPoor Illumination

More Information
  • Received Date: May 13, 2013
  • Published Date: January 04, 2015
  • Severe atmosphere,optic,and other negative effects will result in low brightness and contract problem and there makes remote sensing image into low quality. In this paper,two kinds of algorithms based on human eye feature are analyzed with their advantages and limits.A novel optimized Retinex approach is proposed. It fuses Retinex theory and image enhancement algorithm that strengthens brightness and contrast via a color space transform. Brightness and contrast are shifted with additional image edge features while holding image hue being constant. The results from image enhancement can be more comfortable for human eye features,provide significant improvement in brightness and contrast,delivers richer image information,and avoids cross color phenomenon. The experimental data resource was a low-light-level image processed to illustrate the efficiency of our method via fineness,the hue bias exponent,entropy,and several other indexes.
  • Related Articles

    [1]LIU Jianjun, REN Xin, TAN Xu, LI Chunlai. Lunar Image Data Preprocessing and Quality Evaluation of CCD Stereo Camera on Chang'E-2[J]. Geomatics and Information Science of Wuhan University, 2013, 38(2): 186-190.
    [2]ZHAI Liang, TANG Xinming, ZHANG Guo, ZHU Xiaoyong. Remote Sensing Image Compression Quality Assessment and Its Application[J]. Geomatics and Information Science of Wuhan University, 2009, 34(3): 289-292.
    [3]ZHAI Liang, TANG Xinming, LI Lin, HONG Zhigang. A New Quality Assessment Index for Compressed RS Image[J]. Geomatics and Information Science of Wuhan University, 2007, 32(10): 872-875.
    [4]WAN Xiaoxia, XIE Dehong, XU Jinlin. Quality Evaluation of Halftone by Halftoning Algorithm-Based Adaptive Method[J]. Geomatics and Information Science of Wuhan University, 2006, 31(9): 765-768.
    [5]GUO Qingsheng, LI Liusuo, JIA Yuming, SUN Yan. Quality Evaluation of Statistical Data Classification Considering Spatial Autocorrelation[J]. Geomatics and Information Science of Wuhan University, 2006, 31(3): 240-243.
    [6]HUShengwu, WANGXinzhou, XIEYubo, TAOBenzao. GIS Product Quality Evaluation Based on Rough Set[J]. Geomatics and Information Science of Wuhan University, 2006, 31(1): 74-77.
    [7]WANG Zhanhong, DU Daosheng. Application of Fuzzy Synthetically Evaluated Method in Remote Sensing Imagery Products Quality Inspected[J]. Geomatics and Information Science of Wuhan University, 2005, 30(5): 412-416.
    [8]YAO Huanmei, HUANG Rentao, JIANG Wenkai. Gray Association Analysis for Atmospheric Environmental Quality Evaluation in a Region[J]. Geomatics and Information Science of Wuhan University, 2005, 30(4): 326-328.
    [9]ZHU Qing, CHEN Songlin, HUANG Duo. Key Issues on Quality Standardization of Geospatial Data[J]. Geomatics and Information Science of Wuhan University, 2004, 29(10): 863-867.
    [10]ZENG Yanwei, GONG Jianya. Implementing Technique of Spatial Data Quality Control and Evaluation[J]. Geomatics and Information Science of Wuhan University, 2004, 29(8): 686-690.
  • Cited by

    Periodical cited type(18)

    1. 杨云飞,汪家明,吴疆,程起敏,王宇. 基于差分卷积的弱光照车牌图像增强. 武汉大学学报(信息科学版). 2024(05): 709-714 .
    2. 武锦沙,杨树文,李轶鲲,赵志威,郑耀,付昱凯. 面向异源影像的FCM-SBN-CVAPS多尺度变化检测方法. 测绘通报. 2023(12): 45-50 .
    3. 王超,刘文超,翟海祥,何涛,王正家. 基于色彩空间和暗原色先验图像融合去雾算法. 电光与控制. 2022(10): 44-50 .
    4. 杨显琼,秦荣波. 融合改进暗通道和Retinex的遥感影像去雾增强算法. 科技创新与应用. 2021(01): 33-35 .
    5. 郝才成,李萍,吴宣儒. 基于Retinex理论的雾天图像增强算法. 无线电工程. 2020(10): 848-852 .
    6. 张明军,俞文静,王影. 基于局部对比度优化的教学视频图像增强方法. 现代电子技术. 2019(02): 75-79 .
    7. 刘海龙,张安兵,王贺封,赵玉玲,田志秀,赵兵杰. 改进多尺度Retinex增强算法的遥感影像不均匀性校正研究. 测绘地理信息. 2019(04): 107-110 .
    8. 李忠海,陈灿灿,金海洋. 改进重构的自适应权重Retinex图像增强算法. 火力与指挥控制. 2018(04): 127-131 .
    9. 侯天峰,叶长青,曾舒婷. 视频增强中亮度闪烁问题的研究及解决. 微型电脑应用. 2018(02): 76-79 .
    10. 郭敬,吉长东,杨健,孟庆岩. 针对高分四号卫星影像的边缘检测技术. 遥感信息. 2018(03): 108-115 .
    11. 李烁,王慧,耿则勋,于翔舟,卢兰鑫. 双范数混合约束的遥感影像亮度不均变分校正. 测绘学报. 2018(12): 1621-1629 .
    12. 田文利. 基于双重滤波与锐化的遥感图像增强算法. 国外电子测量技术. 2017(04): 13-16 .
    13. 陈阳. 组合优化理论的红外图像边缘检测. 激光杂志. 2017(04): 105-108 .
    14. 张鸿雁,罗永莲,武丽芬. 关联规则的红外图像对比度自适应增强方法. 激光杂志. 2017(05): 99-103 .
    15. 李益红,周晓谊. 一种多分辨多尺度的Retinex彩色图像增强算法. 计算机工程与应用. 2017(16): 193-198 .
    16. 丁真真,陈庆然,许义宝,李新华. 工业ECC200码快速定位算法研究. 软件导刊. 2017(09): 61-64 .
    17. 王文智,王文成,宋承欢. 一种夜间图像增强算法. 西部皮革. 2016(10): 276 .
    18. 侯天峰,程和生,张燕. 基于Retinex的视频自适应增强算法. 现代电子技术. 2015(17): 68-71+74 .

    Other cited types(38)

Catalog

    Article views (1300) PDF downloads (551) Cited by(56)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return