YU Hang, WANG Jian, WANG Leyang, NING Yipeng, ZHAO Wei. Analyses of the Impact of Different Types of Acceptance Regions on Data Snooping with Multiple Alternative Hypotheses[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20240136
Citation: YU Hang, WANG Jian, WANG Leyang, NING Yipeng, ZHAO Wei. Analyses of the Impact of Different Types of Acceptance Regions on Data Snooping with Multiple Alternative Hypotheses[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20240136

Analyses of the Impact of Different Types of Acceptance Regions on Data Snooping with Multiple Alternative Hypotheses

More Information
  • Received Date: September 23, 2024
  • Objectives: When the a priori variance factor is known, hyperellipsoidal or hyperpolyhedral acceptance regions are frequently utilized for data snooping with multiple alternative hypotheses to pinpoint potential outliers in the observations. Despite their prevalence, there is a dearth of research examining how these regions affect the efficacy of data snooping. Methods: This study employs residual- and misclosurebased Baarda w-test statistics to provide a comprehensive analysis of the impact of different acceptance regions on the testing space, decision probabilities, the minimal detectable bias (MDB), and the probability of correctly identifying an alternative hypothesis. It also explores how the geometry of the functional model impacts the correct identification probabilities in a two-dimensional misclosure-based testing space. Results: The results show that different types of acceptance regions have a certain impact on the size of the MDB and the testing decision probabilities, but it is not significant. However, under certain geometric conditions, the variation in correct identification probabilities is significant, with a theoretical difference of nearly 3% in single-point positioning scenarios. From the geometric perspective of partitioning of the misclosure space, the difference in acceptance regions will change the subspaces of the critical regions, thereby affecting the results of outlier detection and identification. Conclusions: Analyzing the relationship between different types of acceptance regions and model geometry can help improve the model geometry and reduce its impact on the probability of correct identification. The findings of this research are informative for the selection of hyperellipsoid and hyperpolyhedral acceptance regions, when employing data snooping with multiple alternative hypotheses in scenarios where the a priori variance factor is known.
  • Related Articles

    [1]HUANG Bohua, YANG Bohang, LI Minggui, GUO Zhongkai, MAO Jianyou, WANG Hong. An Improved Method for MAD Gross Error Detection of Clock Error[J]. Geomatics and Information Science of Wuhan University, 2022, 47(5): 747-752. DOI: 10.13203/j.whugis20190430
    [2]WANG Leyang, GU Wangwang, ZHAO Xiong, XU Guangyu, GAO Hua. Determination of Relative Weight Ratio of Joint Inversion Using Bias-Corrected Variance Component Estimation Method[J]. Geomatics and Information Science of Wuhan University, 2022, 47(4): 508-516. DOI: 10.13203/j.whugis20200216
    [3]IA Lei, LAI Zulong, MEI Changsong, JIAO Chenchen, JIANG Ke, PAN Xiong. An Improved Algorithm for Real-Time Cycle Slip Detection and Repair Based on TurboEdit Epoch Difference Model[J]. Geomatics and Information Science of Wuhan University, 2021, 46(6): 920-927. DOI: 10.13203/j.whugis20190287
    [4]ZHAO Jianhu, WU Jingwen, ZHAO Xinglei, ZHOU Fengnian. A Correction Model for Depth Bias in Airborne LiDAR Bathymetry Systems[J]. Geomatics and Information Science of Wuhan University, 2019, 44(3): 328-333. DOI: 10.13203/j.whugis20160481
    [5]LU Tieding, YANG Yuanxi, ZHOU Shijian. Comparative Analysis of MDB for Different Outliers Detection Methods[J]. Geomatics and Information Science of Wuhan University, 2019, 44(2): 185-192, 199. DOI: 10.13203/j.whugis20140330
    [6]LOU Yidong, GONG Xiaopeng, GU Shengfeng, ZHENG Fu, YI Wenting. The Characteristic and Effect of Code Bias Variations of BeiDou[J]. Geomatics and Information Science of Wuhan University, 2017, 42(8): 1040-1046. DOI: 10.13203/j.whugis20150107
    [7]SUN Wenchuan, BAO Jingyang, JIN Shaohua, XIAO Fumin, ZHANG Zhiwei. A Re-calibration Method for Roll Bias of Multi-beam Sounding System[J]. Geomatics and Information Science of Wuhan University, 2016, 41(11): 1440-1444. DOI: 10.13203/j.whugis20140481
    [8]ZOU Qin, LI Qingquan. Target-points MST for Pavement Crack Detection[J]. Geomatics and Information Science of Wuhan University, 2011, 36(1): 71-75.
    [9]HUANG Xianyuan, ZHAI Guojun, SUI Lifen, HUANG Motao. Application of Least Square Support Vector Machine to Detecting Outliers of Multi-beam Data[J]. Geomatics and Information Science of Wuhan University, 2010, 35(10): 1188-1191.
    [10]XU Caijun, WANG Jianglin. Linear Minimum Mean Square Error Estimation for Wet Delay Correction in SAR Interferogram[J]. Geomatics and Information Science of Wuhan University, 2007, 32(9): 757-760.

Catalog

    Article views (55) PDF downloads (11) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return