CHEN Bin, WANG Li, SHU Bao, LI Xinrui, QU Wei, WU Hanwen, QIAN Yu, WU Zhenyu. GNSS Landslide Monitoring Coordinate Time Series Noise Reduction Methods Based on Composite Divisional Indicator Index and CEEMD-WT[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20240123
Citation: CHEN Bin, WANG Li, SHU Bao, LI Xinrui, QU Wei, WU Hanwen, QIAN Yu, WU Zhenyu. GNSS Landslide Monitoring Coordinate Time Series Noise Reduction Methods Based on Composite Divisional Indicator Index and CEEMD-WT[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20240123

GNSS Landslide Monitoring Coordinate Time Series Noise Reduction Methods Based on Composite Divisional Indicator Index and CEEMD-WT

More Information
  • Received Date: September 19, 2024
  • Objectives: Aiming at the problems that Complementary Ensemble Empirical Mode Decomposition ( CEEMD) is difficult to effectively separate out the high-frequency deformation signals in the global navigation satellite system ( GNSS) deformation monitoring sequences, as well as the difficulty of removing the vibration noise of the monitoring environment that is interspersed in the low-frequency deformation signals, a filtering and noise reduction method based on the combination of CEEMD, wavelet transform ( WT) , and composite partitioning indexes is presented. Methods: First, CEEMD of the original sequence is performed and the T-value of each Intrinsic Mode Functions ( IMF ) is calculated. Second, the mth layer IMF component corresponding to the first local minima T is searched for, and the first m-1 layers of IMF components are rejected as pure noise. further, according to the magnitude of the T-value, the residual IMF components are classified into retained signals and to-be-processed signals, and the processed signals are secondly noise reduced using the WT method for secondary noise reduction of the signal to be processed, Finally, the processed signal is reconstructed with the retained signal and the trend term to obtain the final noise reduction result. Results: From the simulation experiments with real data experiments on landslides:( 1)The T-value has better signal retention ability and noise suppression compared to the noise reduction effect of the WT-based, mean standardized absolute moment -based and correlation coefficient-based CEEMD methods, and the method has the best SNR value and RMSE in the four sets of simulated data experiments.( 2) After denoising with this method, its root mean square errors in E, N and U directions are 1.13 mm, 1.63 mm and 2.22 mm, respectively, which are 21%, 17%, and 12% better than the noise reduction effect of the WT-based, mean standardized absolute moment -based and correlation coefficient-based CEEMD methods, respectively.( 3) The scheme in this paper has maintained the red warning after the first red warning was issued at 04:00 on 3 October, and compared to the moments when the first three schemes erroneously issued red warnings, it only issued orange warnings, and the change in the displacement rate of this scheme was also the smoothest of the four schemes, with the warning level not dropping to blue.Conclusions: The proposed method can not only retain the relatively high-frequency landslide deformation signals, but also effectively remove the vibration noise interspersed in the lowfrequency deformation signals, and can be applied to the de-noising of monitoring sequences of landslide scenarios, and the filtering method can effectively improve the accuracy of landslide monitoring and early warning, and avoid causing casualties and waste of resources.
  • [1]
    Zhang Qin, Bai Zhengwei, Huang Guanwen, et al. Review of GNSS Landslide Monitoring and Early Warning[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(10): 1985-2000. (张勤, 白正伟, 黄观文, 等. GNSS滑坡监测预警技术进展[J]. 测绘学报, 2022, 51(10): 1985-2000.)
    [2]
    Wang Li, Xu Hao, Shu Bao, et al. Research Progress and Prospects of GNSS Deformation Monitoring Technology for Landslide Hazards[J]. Navigation Positioning and Timing, 2023, 10(1): 12-26. (王利, 许豪, 舒宝, 等. 滑坡灾害GNSS监测技术研究进展与展望[J]. 导航定位与授时, 2023, 10(1): 12-26.)
    [3]
    Malet J P, Maquaire O, Calais E. The Use of Global Positioning System Techniques for the Continuous Monitoring of Landslides: Application to the Super-Sauze Earthflow (Alpes-de-haute-Provence, France)[J]. Geomorphology, 2002, 43(1/2): 33-54.
    [4]
    Wang Li, Zhang Qin, Li Xunchang, et al. Dynamic and Real Time Deformation Monitoring of Landslide With GPS-RTK Technology[J]. Journal of Engineering Geology, 2011, 19(2): 193-198. (王利, 张勤, 李寻昌, 等. GPS RTK技术用于滑坡动态实时变形监测的研究[J]. 工程地质学报, 2011, 19(2): 193-198.)
    [5]
    Du Yuan, Wang Chun, Zhang Qin, et al. Real-time GNSS Filtering Algorithm Considering State Characteristics of Loess Landslide Hazards[J]. Geomatics and Information Science of Wuhan University, 2023, 48(7): 1216- 1222. (杜源, 王纯, 张勤, 等. 顾及黄土滑坡灾害状态特征的实时GNSS滤波算法[J]. 武汉大学学报(信息科学版), 2023, 48(7): 1216-1222.)
    [6]
    Bai Zhengwei, Zhang Qin, Huang Guanwen, et al. Real-time BeiDou Landslide Monitoring Technology of “Light Terminal Plus Industry Cloud”[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(11): 1424-1429. (白正伟, 张勤, 黄观文, 等. “轻终端+行业云” 的实时北斗滑坡监测技术[J]. 测绘学报, 2019, 48(11): 1424- 1429.)
    [7]
    Li Zhicai, Chen Zhi, Wu Junli, et al. Co-seismic Deformation of the Jishishan 6.2 Earthquake in Gansu Province Based on High-Frequency GNSS Observation[J/OL]. Geomatics and Information Science of Wuhan University, 2024.(李志才, 陈智, 武军郦, 等. 基于高频GNSS观测的甘肃积石山6.2级地震同震形变[J/OL]. 武汉大学学报(信息科学版), 2024.)
    [8]
    He Yuefan, Nie Guigen, Wu Shuguang, et al. Analysis of Relationship Between CMONOC Coordinate Time Series Considering Rainfall and Hydrological Loading Under ITRF2014 Framework[J]. Geomatics and Information Science of Wuhan University, 2024, 49(06): 960-969.(何月帆, 聂桂根, 武曙光, 等. ITRF2014框架下顾及降雨量与水文负载的CMONOC坐标时间序列关系分析[J]. 武汉大学学报(信息科学版), 2024, 49(06): 960-969.)
    [9]
    Huang N E, Shen Z, Long S R, et al. The Empirical Mode Decomposition and the Hilbert Spectrum for Nonlinear and Non-stationary Time Series Analysis[J]. Proceedings of the Royal Society of London Series A: Mathematical, Physical and Engineering Sciences, 1998, 454(1971): 903-995.
    [10]
    Liu Xia, Huang Yang, Huang Jing, et al. Wavelet Entropy Threshold Seismic Signal Denoising Based on Empirical Mode Decomposition(EMD)[J]. Journal of Jilin University (Earth Science Edition), 2016, 46(1):262-269. (刘霞, 黄阳, 黄敬, 等. 基于经验模态分解(EMD)的小波熵阈值地震信号去噪[J]. 吉林大学学报(地球科学版), 2016, 46(1): 262-269.)
    [11]
    Luo Feixue, Dai Wujiao. Comparison of Emd With Wavelet Decomposition for Dynamic Deformation Monitoring[J]. Journal of Geodesy and Geodynamics, 2010, 30(3): 137-141. (罗飞雪, 戴吾蛟. 小波分解与EMD在变形监测应用中的比较[J]. 大地测量与地球动力学, 2010, 30(3): 137-141.)
    [12]
    Wu Z H, Huang N E. Ensemble Empirical Mode Decomposition: A noise-assisted Data Analysis Method[J]. Advances in Adaptive Data Analysis, 2009, 1(1): 1-41.
    [13]
    Yeh J R, Shieh J S, Huang N E. Complementary Ensemble Empirical Mode Decomposition: A Novel Noise Enhanced Data Analysis Method[J]. Advances in Adaptive Data Analysis, 2010, 2(2): 135-156.
    [14]
    Dong Jianxiao. Research on Multipath Error Elimination Method Based on GNSS Monitoring Data[J]. Geomatics Technology and Equipment, 2022, 24(4): 49-55. (董建晓. 基于GNSS监测数据的多路径误差消除方法研究[J]. 测绘技术装备, 2022, 24(4): 49-55.)
    [15]
    Dai Wujiao, Ding Xiaoli, Zhu Jianjun, et al. EMD Filter Method and Its Application in GPS Multipath[J]. Acta Geodaetica et Cartographica Sinica, 2006, 35(4): 321-327. (戴吾蛟, 丁晓利, 朱建军, 等. 基于经验模式分解的滤波去噪法及其在GPS多路径效应中的应用[J]. 测绘学报, 2006, 35(4): 321-327.)
    [16]
    Jia Ruisheng, Zhao Tongbin, Sun Hongmei, et al. Micro-seismic Signal Denoising Method Based on Empirical Mode Decomposition and Independent Component Analysis[J]. Chinese Journal of Geophysics, 2015, 58(3): 1013-1023. (贾瑞生, 赵同彬, 孙红梅, 等. 基于经验模态分解及独立成分分析的微震信号降噪方法[J]. 地球物理学报, 2015, 58(3): 1013-1023.)
    [17]
    Zhang Shuangcheng, He Yuefan, Li Zhenyu, et al. EMD for Noise Reduction of GPS Time Series[J]. Journal of Geodesy and Geodynamics, 2017, 37(12): 1248-1252. (张双成, 何月帆, 李振宇, 等. EMD用于GPS时间序列降噪分析[J]. 大地测量与地球动力学, 2017, 37(12): 1248-1252.)
    [18]
    Boudraa Abdel-Ouahab, Cexus Jean-Christophe. EMD-based signal filtering[J]. IEEE Transactions on Instrumentation and Measurement, 2007, 56(6):2196-2202.
    [19]
    Komaty Ali, Boudraa Abdel-Ouahab, Augier Benoit, et al. EMD-based filtering using similarity measure between probability density functions of IMFs[J]. IEEE Transactions on Instrumentation and Measurement, 2013, 63(1):27-34.
    [20]
    Kuang Weichao, Ling Wing-Kuen, Yang Zhijing. Parameter free and reliable signal denoising based on constants obtained from IMFs of white Gaussian noise[J]. Measurement, 2017, 102: 230-243
    [21]
    DOK A,FUKUOKA H,KATSUMI T,et al.Ter-tiary creep reproduction in back-pressure-con-trolledcontrolled ring shear test to understa-nd the mechanism and final failure time of rainfall-induced landslides[J].Annuals of Disa-ster Prevention Research Institute,Kyoto Univ-ersity,2011,54; 263-270.
    [22]
    Qu Xuanyu, Li XinRui, Zheng Lei, et al. A GNSS Time Series Denoising Method with Mixed Use of CrossValidation and CEEMD-WT[J]. Characteristics of Loess Landslide H-azards. Geomatics and Information Science of Wuhan University, 2023.(曲轩宇, 李新瑞, 郑蕾, 等. 联合交叉验证和CEEMD-WT的GNSS时间序列降噪方法[J/OL]. 武汉大学学报(信息科学版), 2023.)
    [23]
    Xu Qiang. Theoretical Studies on Prediction of Landslides Using Slope Deformation Process Data[J]. Journal of Engineering Geology, 2012, 20(2): 145-151. (许强. 滑坡的变形破坏行为与内在机理[J]. 工程地质学报, 2012, 20(2): 145-151.)
    [24]
    Qian Rongrong, Wang Jian, Liu Licong. GNSS High Precision Dynamic Deformation Monitoring Research Based on CEEMD Auto Correlation De-Noising Technique[J]. Journal of Geodesy and Geodynamics, 2017, 37(6): 623-626. (钱荣荣, 王坚, 刘立聪. 基于完备经验模态分解自相关消噪技术的GNSS高精度动态变形监测研究[J]. 大地测量与地球动力学, 2017, 37(6): 623-626.)
    [25]
    Wu Xiaotao, Yang Meng, Yuan Xiaohui, et al. Bearing Fault Diagnosis Using EEMD and Improved Morphological Filtering Method Based on Kurtosis Criterion[J]. Journal of Vibration and Shock, 2015, 34(2): 38-44. (吴小涛, 杨锰, 袁晓辉, 等. 基于峭度准则EEMD及改进形态滤波方法的轴承故障诊断[J]. 振动与冲击, 2015, 34(2): 38-44.)
    [26]
    Bai Ling, Chen Zhongsheng, Zhao Benfu. Application of Ensemble Empirical Mode Decomposition Method in Multiscale Analysis of Meiyu in middle-lower Reaches of Yangtze River[J]. Resources and Environment in the Yangtze Basin, 2015, 24(3): 482-488. (柏玲, 陈忠升, 赵本福. 集合经验模态分解在长江中下游梅雨变化多尺度分析中的应用[J]. 长江流域资源与环境, 2015, 24(3): 482-488.)
    [27]
    Zhu Jianjun, Zhang Zhetao, Kuang Cuilin, et al. A Reliable Evaluation Indicator of Wavelet De-noising[J]. Geomatics and Information Science of Wuhan University, 2015, 40(5): 688-694. (朱建军, 章浙涛, 匡翠林, 等. 一种可靠的小波去噪质量评价指标[J]. 武汉大学学报(信息科学版), 2015, 40(5): 688-694.)
    [28]
    Wang Xu, Wang Chang. A Kind of Wavelet De-Noising Composite Evaluation Index Based on Entropy Method[J]. Journal of Geodesy and Geodynamics, 2018, 38(7): 698-702. (王旭, 王昶. 一种基于熵权法的小波去噪复合评价指标[J]. 大地测量与地球动力学, 2018, 38(7): 698-702.)
    [29]
    Li Y Y, Xu C J, Yi L, et al. A Data-driven Approach for Denoising GNSS Position Time Series[J]. Journal of Geodesy, 2018, 92(8): 905-922.
    [30]
    Donoho D L, Johnstone I M. Ideal Spatial Adaptation by Wavelet Shrinkage[J]. Biometrika, 1994, 81(3): 425- 455.
    [31]
    Alharbi N, Hassani H. A New Approach for Selecting the Number of the Eigenvalues in Singular Spectrum Analysis[J]. Journal of the Franklin Institute, 2016, 353(1): 1-16.
    [32]
    Bogusz J, Klos A. On the Significance of Periodic Signals in Noise Analysis of GPS Station Coordinates Time Series[J]. GPS Solutions, 2016, 20(4): 655-664.
    [33]
    Xu Zongqiu, Zhang Hongyang, Xu Yantian, et al. A Method for Estimating Ionospheric PowerSpectral Density in BDS Undifferenced and Uncombined PPP[J]. Characteristics of Loess Landslide Hazards. Geomatics and Information Science of Wuhan University, 2023.(徐宗秋, 张鸿洋, 徐彦田, 等. 一种BDS非差非组合PPP中电离层功率谱密度估计方法[J/OL]. 武汉大学学报(信息科学版), 2023.)
    [34]
    Li X R, Wang L, Qu X Y, et al. A GPS Multipath Mitigation Method in Coordinate-domain Considering the Effects of Gross Errors and Missing Data[J]. Measurement, 2024, 225: 114035.
    [35]
    Li WanQiu, Li Wanqiu, Zhang Chuanyin, et al. Terrestrial Water Storage and Crustal Vertical Variation in Xinjiang Region, China Using Independent Component Analysis[J]. Geomatics and Information Science of Wuhan University, 2024, 49(05): 794-804.(李婉秋, 郭秋英, 章传银, 等. 利用独立成分分析法研究新疆地区陆地水储量及其地壳垂向变化[J]. 武汉大学学报(信息科学版), 2024, 49(05): 794-804.)
    [36]
    Xu Q, Yuan Y, Zeng Y P, et al. Some New Pre-warning Criteria for Creep Slope Failure[J]. Science China Technological Sciences, 2011, 54(1): 210-220.
    [37]
    Wang Hailong, Zhao Yan, Wang Haijun, et al. De-noising method of tunnel blasting based on CEEMDAN decomposition-wavelet packet analysis[J]. Explosion and Shock Waves, 2021, 41(05): 125-137. (王海龙,赵岩, 王海军, 等. 基于CEEMDAN-小波包分析的隧道爆破信号去噪方法[J]. 爆炸与冲击, 2021, 41(05): 125- 137.)
    [38]
    Liu X H, Du Y, Huang G W, et al. Mitigating GNSS Multipath in Landslide Areas: A Novel Approach Considering Mutation Points at Different Stages[J]. Landslides, 2023, 20(11): 2497-2510.
    [39]
    Huang G W, Du S, Wang D. GNSS Techniques for Real-time Monitoring of Landslides: A Review[J]. Satellite Navigation, 2023, 4(1): 5.
  • Related Articles

    [1]YANG Wan-ling, GAO Wu-tong, LIU Lu, WANG Bo, YAN Jian-guo. Orbit determination and accuracy analysis for comet 311P based on space-based and ground-based optical data[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20220710
    [2]LI Duoduo, ZHOU Xuhua, LI Kai, XU Kexin, TAO Enzhe. Precise Orbit Determination for HY2B Using On-Board GPS Data[J]. Geomatics and Information Science of Wuhan University, 2023, 48(12): 2060-2068. DOI: 10.13203/j.whugis20210303
    [3]WANG Bo, LIU Lu, YAN Jianguo, GAO Wutong. Development of Asteroid Optical Determination Software and Data Processing Analysis[J]. Geomatics and Information Science of Wuhan University, 2023, 48(2): 277-284. DOI: 10.13203/j.whugis20200195
    [4]ZHOU Xuhua, WANG Xiaohui, ZHAO Gang, PENG Hailong, WU Bin. The Precise Orbit Determination for HY2A Satellite Using GPS,DORIS and SLR Data[J]. Geomatics and Information Science of Wuhan University, 2015, 40(8): 1000-1005. DOI: 10.13203/j.whugis20130730
    [5]LI Wenwen, LI Min, SHI Chuang, ZHAO Qile. Jason-2 Precise Orbit Determination Using DORIS RINEX Phase Data[J]. Geomatics and Information Science of Wuhan University, 2013, 38(10): 1207-1211.
    [6]ZHANG Xiaohong, LI Pan, ZUO Xiang. Kinematic Precise Orbit Determination Based on Ambiguity-Fixed PPP[J]. Geomatics and Information Science of Wuhan University, 2013, 38(9): 1009-1013.
    [7]LI Min, ZHAO Qile, GE Maorong. Simulation Research on Precise Orbit Determination for GIOVE-A[J]. Geomatics and Information Science of Wuhan University, 2008, 33(8): 818-820.
    [8]ZHAO Qile, SHI Chuang, LIU Xianglin, GE Maorong. Determination of Precise Orbit Using Onboard GPS Data for Gravity Modeling Oriented Satellites[J]. Geomatics and Information Science of Wuhan University, 2008, 33(8): 810-814.
    [9]ZHAO Qile, LIU Jingnan, GE Maorong, SHI Chuang. Precision Orbit Determination of CHAMP Satellite with cm-level Accuracy[J]. Geomatics and Information Science of Wuhan University, 2006, 31(10): 879-882.
    [10]GUO Jinlai, ZHAO Qile, GUO Daoyu. Reducing the Influence of Gravity Model Error on Precise Orbit Determination of Low Earth Orbit Satellites[J]. Geomatics and Information Science of Wuhan University, 2006, 31(4): 293-296.

Catalog

    Article views (73) PDF downloads (14) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return