WANG Bo, LIU Lu, YAN Jianguo, GAO Wutong. Development of Asteroid Optical Determination Software and Data Processing Analysis[J]. Geomatics and Information Science of Wuhan University, 2023, 48(2): 277-284. DOI: 10.13203/j.whugis20200195
Citation: WANG Bo, LIU Lu, YAN Jianguo, GAO Wutong. Development of Asteroid Optical Determination Software and Data Processing Analysis[J]. Geomatics and Information Science of Wuhan University, 2023, 48(2): 277-284. DOI: 10.13203/j.whugis20200195

Development of Asteroid Optical Determination Software and Data Processing Analysis

More Information
  • Received Date: March 16, 2021
  • Available Online: February 16, 2023
  • Objectives 

    Based on the first asteroid exploration plan announced by China Space Administration on April 19, 2019, the main belt comet 133P/Elst-Pizarro (7968) is one of the possible mission targets. We aim to report integrated orbital fits for 133P through all the available ground-based optical data.

    Methods 

    We developed an optical orbit determination software and compared it with the well-known OrbFit software system. The 133P/Elst-Pizarro's ground-based optical observation data from July 24, 1979 to October 28, 2019 were analyzed. In addition, we carried out a simulation orbit determination analysis aimed at 133P/Elst-Pizarro to discuss the orbit determination accuracy from ground-based optical data.

    Results 

    After the fitting process, the residual distribution of 133P ground-based optical data is consistent between our results and the results from OrbFit. The measurement statistical residual root mean square (RMS) is less than 0.01″, and the internal coincidence accuracy of orbit determination is also consistent with each other. In our simulation experiments, we used 20-year simulation optical observation data measured once a month from Yunnan station and Chile station. The data were also added with Gaussian white noise which is close to the current actual observation level. The results of our simulation experiments reflected that the optical orbit determination accuracy of the asteroid was at 50 km level.

    Conclusions 

    The processing results of 133P optical data suggests the reliability of our software. Further simulation analysis shows that the optical orbit determination accuracy of the asteroid can be effectively improved by increasing the observation data or reducing the observation noise.

  • [1]
    张荣桥, 黄江川, 赫荣伟, 等. 小行星探测发展综述[J]. 深空探测学报, 2019, 6(5): 417-423. doi: 10.15982/j.issn.2095-7777.2019.05.002

    Zhang Rongqiao, Huang Jiangchuan, He Rongwei, et al. The Development Overview of Asteroid Exploration[J]. Journal of Deep Space Exploration, 2019, 6(5): 417-423. doi: 10.15982/j.issn.2095-7777.2019.05.002
    [2]
    Veverka J, Belton M, Klaasen K, et al. Galileo's Encounter with 951 Gaspra: Overview[J]. Icarus, 1994, 107(1): 2-17. doi: 10.1006/icar.1994.1002
    [3]
    Prockter L, Murchie S, Cheng A, et al. The NEAR Shoemaker Mission to Asteroid 433 Eros[J]. Acta Astronautica, 2002, 51(1): 491-500.
    [4]
    NASA. Solar System Exploration: Hayabusa[EB/OL]. [2020-01-12]. https://solarsystem.nasa.gov/missions/hayabusa/in-depth/.
    [5]
    Boehnhardt H, Bibring J P, Apathy I, et al. The Philae Lander Mission and Science Overview[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2017, 375(2097): 20160248.
    [6]
    胡寿村, 季江徽, 赵玉晖, 等. 嫦娥二号飞越小行星试验中图塔蒂斯轨道确定与精度分析[J]. 中国科学: 技术科学, 2013, 43(5): 506-511. https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK201305006.htm

    Hu Shoucun, Ji Jianghui, Zhao Yuhui, et al. Determination and Precision Analysis of Tutatis Orbit in Chang'E-2 Flying over Asteroid Test[J]. Scientia Sinica (Technologica), 2013, 43(5): 506-511. https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK201305006.htm
    [7]
    中国国家航天局. 小行星探测任务有效载荷和搭载项目机遇公告[EB/OL]. [2020-01-12]. http://www.cnsa.gov.cn/n6758823/n6758839/c6805886/content.html.

    China National Space Administration. A Project Opportunity Announcement of Asteroid Exploration Mission Payload and Piggyback[EB/OL]. [2020-01-12]. http://www.cnsa.gov.cn/n6758823/n6758839/c6805886/content.html.
    [8]
    李春来, 刘建军, 严韦, 等. 小行星探测科学目标进展与展望[J]. 深空探测学报, 2019, 6(5): 424-436. doi: 10.15982/j.issn.2095-7777.2019.05.003

    Li Chunlai, Liu Jianjun, Yan Wei, et al. Overview of Scientific Objectives for Minor Planets Exploration[J]. Journal of Deep Space Exploration, 2019, 6(5): 424-436. doi: 10.15982/j.issn.2095-7777.2019.05.003
    [9]
    Yu L L, Hsia C H, Ip W H. Low-Activity Main-Belt Comet 133P/Elst-Pizarro: New Constraints on Its Albedo, Temperature, and Active Mechanism from a Thermophysical Perspective[J]. The Astronomical Journal, 2020, 159(2): 66. doi: 10.3847/1538-3881/ab61f7
    [10]
    Cao J, Liu Y, Hu S, et al. Navigation of Chang'E-2 Asteroid Exploration Mission and the Minimum Distance Estimation During Its Fly-By of Toutatis[J]. Advances in Space Research, 2015, 55(1): 491-500.
    [11]
    Chesley S R, Farnocchia D. Asteroid 101955 (1999 RQ36) Epemeris Delivery, JPL Solution 76[R]. Pasadena, USA: Jet Propulsion Laboratory, 2013.
    [12]
    Farnocchia D, Takahashi Y, Chesley S R, et al. Asteroid 101955 Bennu Epemeris D-Elivery, JPL Solution 103[R]. Pasadena, USA: Jet Propulsion Laboratory, 2018.
    [13]
    张翔, 季江徽. 近地小行星地基雷达探测研究现状[J]. 天文学进展, 2014, 32(1): 24-39. https://www.cnki.com.cn/Article/CJFDTOTAL-TWJZ201401003.htm

    Zhang Xiang, Ji Jianghui. Ground-Based Radar Detection of Near-Earth Asteroids[J]. Progress in Astronomy, 2014, 32(1): 24-39. https://www.cnki.com.cn/Article/CJFDTOTAL-TWJZ201401003.htm
    [14]
    The OrbFit Software Package[DB/OL]. [2020-01-13]. http://adams.dm.unipi.it/~orbmaint/orbfit/.
    [15]
    李济生. 人造卫星精密轨道确定[M]. 北京: 解放军出版社, 1995.

    Li Jisheng. Satellite Precision Orbit Deter-mination[M]. Beijing, China: Chinese People's Lib-Eration Army Publishing House, 1995.
    [16]
    JPL DE431 Ephemeris[DB/OL]. [2020-01-13]. fttp://ssd.jpl.nasa.gov/pub/eph/planets/ascii/.
    [17]
    Montenbruck O, Gill E. 卫星轨道-模型、方法和应用[M]. 王家松, 祝开建, 胡小工, 译. 北京: 国防工业出版社, 2012.

    Montenbruck O, Gill E. Satellite Orbits Models, Methods and Applications[M]. Wang Jiasong, Zhu Kaijian, Hu Xiaogong, Translated. Beijing, China: National Defense Industry Press, 2012.
    [18]
    Carpino M, Milani A, Chesley S R. Error Statistics of Asteroid Optical Astrometric Observations[J]. Icarus, 2003, 166(2): 248-270.
    [19]
    胡松杰, 唐歌实. 北京中心深空探测器精密定轨与分析软件系统[J]. 飞行器测控学报, 2010, 29(5): 69-74. https://www.cnki.com.cn/Article/CJFDTOTAL-FXCK201005023.htm

    Hu Songjie, Tang Geshi. BACC Orbit Determination and Analysis Software for Deep-Space Explorers[J]. Journal of Spacecraft TT & C Technology, 2010, 29(5): 69-74. https://www.cnki.com.cn/Article/CJFDTOTAL-FXCK201005023.htm
    [20]
    Broucke R A, Cefola P J. On the Equinoctial Orbit Elements[J]. Celestial Mechanics, 1972, 5(3): 303-310.
    [21]
    Vinogradova T A, Kochetova O M, Chernetenko Y A, et al. The Orbit of Asteroid (99942) Apophis as Determined from Optical and Radar Observations[J]. Solar System Research, 2008, 42(4): 271-280.
    [22]
    杨轩, 鄢建国, 叶茂, 等. 对一种月球与火星探测多程微波测量链路定轨定位的数值模拟初步分析[J]. 深空探测学报, 2018, 5(2): 154-161. https://www.cnki.com.cn/Article/CJFDTOTAL-SKTC201802007.htm

    Yang Xuan, Yan Jianguo, Ye Mao, et al. Preliminary Numerical Analysis of Precise Orbit Determination for a Multi-way Microwave Measurement Mode in the Lunar and Mars Missions[J]. Journal of Deep Space Exploration, 2018, 5(2): 154-161. https://www.cnki.com.cn/Article/CJFDTOTAL-SKTC201802007.htm
    [23]
    刘山洪, 鄢建国, 杨轩, 等. 水星探测器精密定轨软件研制及应用[J]. 武汉大学学报(信息科学版), 2019, 44(4): 510-517. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201904006.htm

    Liu Shanhong, Yan Jianguo, Yang Xuan, et al. Development of Mercury Precise Orbit Determination Software and Application[J]. Geomatics and Information Science of Wuhan University, 2019, 44(4): 510-517. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201904006.htm
    [24]
    Greenberg A H, Margot J L, Verma A K, et al. Yarkovsky Drift Detections for 247 Near-Earth Asteroids[J]. The Astronomical Journal, 2020, 159(3): 92.
    [25]
    Emelyanov N. Precision of the Ephemerides of Outer Planetary Satellites[J]. Planetary and Space Science, 2010, 58(3): 411-420.
    [26]
    Emelyanov N V, Samorodov M Y. Analytical Theory of Motion and New Ephemeris of Triton from Observations[J]. Monthly Notices of the Royal Astronomical Society, 2015, 454(2): 2205-2215.
    [27]
    Brozović M, Showalter M R, Jacobson R A, et al. Orbits and Resonances of the Regular Moons of Neptune[J]. Icarus, 2020, 338: 113462.
    [28]
    Jacobson R A. The Orbits of the Neptunian Satellites and the Orientation of the Pole of Neptune[J]. The Astronomical Journal, 2009, 137(5): 4322-4329.
  • Related Articles

    [1]LIU Shuo, ZHANG Lei, LI Jian. A Modified Wide Lane Bootstrapping Ambiguity Resolution Algorithm[J]. Geomatics and Information Science of Wuhan University, 2018, 43(4): 637-642. DOI: 10.13203/j.whugis20150462
    [2]Wang Bing, Sui Lifen, Wang Wei, Ma Cheng. Rapid Resolution of Integer Ambiguity in Integrated GPS/Gyro Attitude Determination[J]. Geomatics and Information Science of Wuhan University, 2015, 40(1): 128-133.
    [3]FENG Wei, HUANG Dingfa, YAN Li, LI Meng. GNSS Dual-Frequency Integer Relationship Constrained Ambiguity Resolution[J]. Geomatics and Information Science of Wuhan University, 2012, 37(8): 945-948.
    [4]QIU Lei, HUA Xianghong, CAI Hua, WU Yue. Direct Calculation of Ambiguity Resolution in GPS Short Baseline[J]. Geomatics and Information Science of Wuhan University, 2009, 34(1): 97-99.
    [5]WANG Xinzhou, HUA Xianghong, QIU Lei. A New Method for Integer Ambiguity Resolution in GPS Deformation Monitoring[J]. Geomatics and Information Science of Wuhan University, 2007, 32(1): 24-26.
    [6]LIU Zhimin, LIU Jingnan, JIANG Weiping, LI Tao. Ambiguity Resolution of GPS Short-Baseline Using Genetic Algorithm[J]. Geomatics and Information Science of Wuhan University, 2006, 31(7): 607-609.
    [7]LOU Yidong, LI Zhenghang, ZHANG Xiaohong. A Method of Short Baseline Solution without Cycle Slip Detection and Ambiguity Resolution[J]. Geomatics and Information Science of Wuhan University, 2005, 30(11): 995-998.
    [8]YANG Rengui, OU Jikun, WANG Zhenjie ZHAO Chunmei, . Searching Integer Ambiguities in Single Frequency Single Epoch by Genetic Algorithm[J]. Geomatics and Information Science of Wuhan University, 2005, 30(3): 251-254.
    [9]P. J. G. Teunissen. A New Class of GNSS Ambiguity Estimators[J]. Geomatics and Information Science of Wuhan University, 2004, 29(9): 757-762.
    [10]Chen Yongqi. An Approach to Validate the Resolved Ambiguities in GPS Rapid Positioning[J]. Geomatics and Information Science of Wuhan University, 1997, 22(4): 342-345.

Catalog

    Article views (1588) PDF downloads (186) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return