Citation: | LI Duoduo, ZHOU Xuhua, LI Kai, XU Kexin, TAO Enzhe. Precise Orbit Determination for HY2B Using On-Board GPS Data[J]. Geomatics and Information Science of Wuhan University, 2023, 48(12): 2060-2068. DOI: 10.13203/j.whugis20210303 |
Haiyang-2 B(HY2B), launched on 24 October 2018, is the first satellite of Chinese marine dynamic environment monitoring mission. It is mainly used to detect various marine dynamic environmental parameters such as sea surface height, sea surface wind field, and gravity field.
Precise orbit tracking and determination is very key for the mission. The reduced-dynamic precise orbit determination for HY2B was carried out utilizing the spaceborne GPS observation in January 2021 and the orbit accuracy was evaluated by means of four methods.
The results show that: (1) The average value of the carrier phase fitting residual is about 7.2 mm, and the three-dimensional position difference between adjacent arcs of 28 h orbit determination overlapping for 4 h is less than 1.5 cm. (2) Compared with the precision orbit ephemerides (POE) issued by Centre National d'Etudes Spatiales (CNES), the root mean square (RMS) average values of the difference in direction radial, along-track, cross-track and three-dimensional(3D) position are 1.5 cm, 2.0 cm, 1.4 cm and 2.9 cm, respectively. (3)The satellite laser ranging validation statistics RMS is about 2 cm. (4) By applying phase center variation model constructed by residual method, the 3D RMS difference with CNES POE product is reduced from 3 cm to 2.5 cm.
In conclusion, high-precision HY2B satellite orbit products can be obtained basing on space-borne GPS observation of the HY2B satellite.
[1] |
Jäggi A, Hugentobler U, Bock H, et al. Precise Orbit Determination for GRACE Using Undifferenced or Doubly Differenced GPS Data[J]. Advances in Space Research, 2007, 39(10): 1612-1619. doi: 10.1016/j.asr.2007.03.012
|
[2] |
Allahvirdi-Zadeh A, Wang K, El-Mowafy A. Precise Orbit Determination of LEO Satellites Based on Undifferenced GNSS Observations[J]. Journal of Surveying Engineering, 2022, DOI: 10.1061/(asce)su.1943-5428.0000382.
|
[3] |
郭靖, 赵齐乐, 李敏, 等. 利用星载GPS观测数据确定海洋2A卫星cm级精密轨道[J]. 武汉大学学报(信息科学版), 2013, 38(1): 52-55. http://ch.whu.edu.cn/cn/article/id/6071
Guo Jing, Zhao Qile, Li Min, et al. Centimeter Level Orbit Determination for HY2A Using GPS Data[J]. Geomatics and Information Science of Wuhan University, 2013, 38(1): 52-55. http://ch.whu.edu.cn/cn/article/id/6071
|
[4] |
郭南男, 周旭华, 吴斌. 利用星载GPS数据进行海洋2A卫星快速精密定轨[J]. 宇航学报, 2015, 36(7): 797-803. https://www.cnki.com.cn/Article/CJFDTOTAL-YHXB201507008.htm
Guo Nannan, Zhou Xuhua, Wu Bin. Rapid Precise Orbit Determination for Haiyang-2A Using On-board GPS Data[J]. Journal of Astronautics, 2015, 36(7): 797-803. https://www.cnki.com.cn/Article/CJFDTOTAL-YHXB201507008.htm
|
[5] |
李凯. 基于星载GNSS的低轨卫星精密定轨研究[D]. 北京: 中国科学院大学, 2020.
Li Kai. Research on the Precision Orbit Determination for LEO Based on Spaceborne GNSS Data[D]. Beijing: University of Chinese Academy of Sciences, 2020
|
[6] |
周旭华, 王晓慧, 赵罡, 等. HY2A卫星的GPS/DORIS/SLR数据精密定轨[J]. 武汉大学学报(信息科学版), 2015, 40(8): 1000-1005. doi: 10.13203/j.whugis20130730
Zhou Xuhua, Wang Xiaohui, Zhao Gang, et al. The Precise Orbit Determination for HY2A Satellite Using GPS, DORIS and SLR Data[J]. Geomatics and Information Science of Wuhan University, 2015, 40(8): 1000-1005. doi: 10.13203/j.whugis20130730
|
[7] |
Guo J, Zhao Q L, Guo X, et al. Quality Assessment of Onboard GPS Receiver and Its Combination with DORIS and SLR for Haiyang 2A Precise Orbit Determination[J]. Science China Earth Sciences, 2015, 58(1): 138-150. doi: 10.1007/s11430-014-4943-z
|
[8] |
赵罡, 周旭华, 吴斌. 海洋二号卫星SLR精密定轨[J]. 科学通报, 2012, 57(36): 3475-3483. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201236006.htm
Zhao Gang, Zhou Xuhua, Wu Bin. SLR Precise Orbit Determination of Haiyang-2 Satellite[J]. Chinese Science Bulletin, 2012, 57(36): 3475-3483. [8]. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201236006.htm
|
[9] |
Mao X Y, Arnold D, Girardin V, et al. Dynamic GPS-Based LEO Orbit Determination with 1 cm Precision Using the Bernese GNSS Software[J]. Advances in Space Research, 2021, 67(2): 788-805. doi: 10.1016/j.asr.2020.10.012
|
[10] |
Švehla D, Rothacher M. Kinematic and Reduced-Dynamic Precise Orbit Determination of Low Earth Orbiters[J]. Advances in Geosciences, 2003, 1: 47-56. doi: 10.5194/adgeo-1-47-2003
|
[11] |
Wang Z Y, Li Z S, Wang N B, et al. Real-Time Precise Orbit Determination for LEO Between Kinematic and Reduced-Dynamic with Ambiguity Resolution[J]. Aerospace, 2022, 9(1): 25. doi: 10.3390/aerospace9010025
|
[12] |
Wu S C, Yunck T P, Thornton C L. Reduced-Dynamic Technique for Precise Orbit Determination of Low Earth Satellites[J]. Journal of Guidance, Control, and Dynamics, 1991, 14(1): 24-30. doi: 10.2514/3.20600
|
[13] |
赵齐乐, 刘经南, 葛茂荣. GPS导航星座及低轨卫星的精密定轨理论和软件研究[J]. 武汉大学学报(信息科学版), 2005, 30(4): 375.
Zhao Qile, Liu Jingnan, Ge Maorong. Research on Precise Orbit Determination Theory and Software of GPS Navigation Constellation and LEO Satellite[J]. Geomatics and Information Science of Wuhan University, 2005, 30(4): 375.
|
[14] |
张强. 采用GPS与北斗的低轨卫星及其编队精密定轨关键技术研究[D]. 武汉: 武汉大学, 2018.
Zhang Qiang. Research on the Key Technologies of Precise Orbit Determination for Low Earth Orbit Satellites and Their Formation Using GPS and BDS[D]. Wuhan: Wuhan University, 2018
|
[15] |
Choi K R. Jason-1 Precision Orbit Determination Using GPS Combined with SLR and DORIS Tracking Data[D]. Austin : The University of Texas at Austin, 2003.
|
[16] |
Jäggi A, Dach R, Montenbruck O, et al. Phase Center Modeling for LEO GPS Receiver Antennas and Its Impact on Precise Orbit Determination[J]. Journal of Geodesy, 2009, 83(12): 1145-1162.
|
[17] |
Hwang C, Tseng T P, Lin T J, et al. Quality Assessment of FORMOSAT-3/COSMIC and GRACE GPS Observables: Analysis of Multipath, Ionospheric Delay and Phase Residual in Orbit Determination[J]. GPS Solutions, 2010, 14(1): 121-131.
|
[18] |
Li K, Zhou X H, Wang W B, et al. Centimeter-Level Orbit Determination for TG02 Spacelab Using Onboard GNSS Data[J]. Sensors, 2018, 18(8): 2671.
|
[19] |
Comp C J, Axelrad P. Adaptive SNR-Based Carrier Phase Multipath Mitigation Technique[J]. IEEE Transactions on Aerospace and Electronic Systems, 1998, 34(1): 264-276.
|
[20] |
龚学文, 王甫红. 星载GPS伪距多路径误差与观测噪声对自主定轨的影响分析[J]. 武汉大学学报(信息科学版), 2018, 43(7): 1048-1055. doi: 10.13203/j.whugis20160223
Gong Xuewen, Wang Fuhong. Impact of Multipath Error and Noise of Space-Borne GPS Code Measurements on Real-Time Onboard Orbit Determination[J]. Geomatics and Information Science of Wuhan University, 2018, 43(7): 1048-1055. doi: 10.13203/j.whugis20160223
|
[21] |
张兵兵, 王正涛, 冯建迪, 等. 伪随机脉冲先验值对低轨卫星简化动力学定轨精度的影响[J]. 武汉大学学报(信息科学版), 2018, 43(8): 1222-1227. doi: 10.13203/j.whugis20160168
Zhang Bingbing, Wang Zhengtao, Feng Jiandi, et al. Impact of Pseudo-Stochastic Pulse Priors on LEO Reduced-Dynamic Orbit Accuracy[J]. Geomatics and Information Science of Wuhan University, 2018, 43(8): 1222-1227. doi: 10.13203/j.whugis20160168
|
[22] |
Guo J Y, Wang Y C, Shen Y, et al. Estimation of SLR Station Coordinates by Means of SLR Measurements to Kinematic Orbit of LEO Satellites[J]. Earth Planets & Space, 2018, 70(1): 201.
|
[1] | GONG Xuewen, WANG Fuhong. Impact of Multipath Error and Noise of Space-Borne GPS Code Measurements on Real-Time Onboard Orbit Determination[J]. Geomatics and Information Science of Wuhan University, 2018, 43(7): 1048-1055. DOI: 10.13203/j.whugis20160223 |
[2] | GONG Xuewen, WANG Fuhong. Autonomous Orbit Determination of HY2A and ZY3 Missions Using Space-borne GPS Measurements[J]. Geomatics and Information Science of Wuhan University, 2017, 42(3): 309-313. DOI: 10.13203/j.whugis20140892 |
[3] | ZHOU Xuhua, WANG Xiaohui, ZHAO Gang, PENG Hailong, WU Bin. The Precise Orbit Determination for HY2A Satellite Using GPS,DORIS and SLR Data[J]. Geomatics and Information Science of Wuhan University, 2015, 40(8): 1000-1005. DOI: 10.13203/j.whugis20130730 |
[4] | MA Yang, OU Jikun, YUAN Yunbin, HUO Xingliang, DING Wenwu. Estimation of GPS Antenna Phase Center Variation and Its Effect on Precise Orbit Determination of LEOs[J]. Geomatics and Information Science of Wuhan University, 2015, 40(7): 894-900. DOI: 10.13203/j.whugis20130626 |
[5] | QIN Jian, GUO Jinyun, KONG Qiaoli, LI Guowei. Precise Orbit Determination of Jason-2with Precision of CentimetersBased on Satellite-borne GPS Technique[J]. Geomatics and Information Science of Wuhan University, 2014, 39(2): 137-141. DOI: 10.13203/j.whugis20120686 |
[6] | WANG Fuhong, XU Qichao, GONG Xuewen, ZHANG Wei. Application of a Gravity Acceleration Approximation Function in the PreciseReal-Time Orbit Determination Using Space-borne GPS Measurements[J]. Geomatics and Information Science of Wuhan University, 2014, 39(1): 47-51. |
[7] | LI Wenwen, LI Min, SHI Chuang, ZHAO Qile. Jason-2 Precise Orbit Determination Using DORIS RINEX Phase Data[J]. Geomatics and Information Science of Wuhan University, 2013, 38(10): 1207-1211. |
[8] | GUO Jing, ZHAO Qile, LI Min, HU Zhigang. Centimeter Level Orbit Determination for HY2A Using GPS Data[J]. Geomatics and Information Science of Wuhan University, 2013, 38(1): 52-55. |
[9] | WANG Fuhong. A Kalman Filtering Algorithm for Precision Real-Time Orbit Determination with Space-Borne GPS Measurements[J]. Geomatics and Information Science of Wuhan University, 2010, 35(6): 653-656. |
[10] | GENG Jianghui, SHI Chuang, ZHAO Qile, LIU Jingnan. GPS Precision Orbit Determination from Combined Ground and Space-borne Data[J]. Geomatics and Information Science of Wuhan University, 2007, 32(10): 906-909. |
1. |
毛万里. 基于Jason-3和GNSS浮标的HY-2B测高数据质量分析. 北京测绘. 2025(01): 111-115 .
![]() |