Citation: | ZHAO Jinqi, CHEN Zhangjie, NIU Yufen, ZHANG Shuangcheng, YAN Pengfei, WANG Xiaying. Building Damages Detection of the 2023 Ms 6.2 Jishishan (Gansu, China) Earthquake Using Multi-temporal Dual Polarization ALOS-2 /PALSAR-2 Data[J]. Geomatics and Information Science of Wuhan University, 2025, 50(2): 284-296. DOI: 10.13203/j.whugis20240118 |
On December 18, 2023, an Ms 6.2 earthquake occurred in Jishishan, Gansu Pro-vince, China, damaging 170 000 houses and severely affecting people's lives and property safety. Efficient and accurate detection can help to understand the distribution of building damage and provide crucial support for post-disaster emergency relief.
This paper combines intensity change detection, cohe-rence detection, and interferometric synthetic aperture radar technology using intensity and phase information from multi-temporal dual-polarized ALOS-2/PALSAR-2 images to identify building damage regions and coseismic deformation fields. First, a likelihood ratio change detection method is used to detect change regions from multi-temporal dual-polarization intensity images. Moreover, optimal coherence interferometric phase is extracted using different polarization mode combinations to obtain a more accurate coseismic deformation field. In addition, coherence change detection is introduced to detect different degrees of surface change distribution using pre- and post-earthquake interferometric coherence based on dual-polarization information. Finally, we combine intensity and coherence change detection results with world settlement footprint 2019 to map building damage regions.
The Beijing⁃3 optical images with a 0.3 m resolution are used to verify the effective of proposed method in building damage mapping. And the experimental results show that: (1) Intensity change detection results based on dual-polarization information are significantly better than single polarization, and the coherence estimation results based on dual-polarization information are also superior to single polarization interferometric pairs. Besides, coseismic deformation field using dual-polarization information avoids more phase unwrapping errors, and the deformation magnitude is similar to the Sentinel-1 results. (2) In the seven earthquake-affected towns, using the intensity change detection with dual-polarization information can detect the building damage area about 0.448 9 km2 and using cohe-rence change detection can detect the building damage area about 1.004 7 km2. (3) Both temporal intensity and coherence change detection methods can extract building damage. In most case, damage regions with coherence-based change detection generally larger than intensity-based.
(1) Dual-polarization information can significantly improve the accuracy of change detection and the coseismic deformation field.(2) Both intensity-based and coherence-based change detection using dual-polarization information can detect damaged buildings in the disaster area. (3) Compared to intensity-based change detection, coherence-based detection is more sensitive and detects a larger damage regions. (4) Intensity-based and coherence-based techniques can complement and corroborate each other, and effectively extract damaged buildings in the earthquake area.
[1] |
许强, 黄润秋. 5·12汶川大地震诱发大型崩滑灾害动力特征初探[J]. 工程地质学报, 2008, 16(6): 721-729.
XU Qiang, HUANG Runqiu. Kinetics Charateristics of Large Landlides Triggered by May 12th Wenchuan Earthquake[J]. Journal of Engineering Geo⁃logy, 2008, 16(6): 721-729.
|
[2] |
李振洪, 朱武, 余琛, 等. 影像大地测量学发展现状与趋势[J]. 测绘学报, 2023, 52(11): 1805-1834.
LI Zhenhong, ZHU Wu, YU Chen, et al. Development Status and Trends of Imaging Geodesy[J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(11): 1805-1834.
|
[3] |
陈博,宋闯,陈毅,等.2023年甘肃积石山Ms 6.2地震同震滑坡和建筑物损毁情况应急识别与影响因素研究[J].武汉大学学报(信息科学版), 2024, DOI: 10.13203/J.whugis20230497. doi: 10.13203/J.whugis20230497
CHEN Bo, SONG Chuang, CHEN Yi, et al. Emergency Identification and Influencing Factor Analysis of Coseismic Landslides and Building Da⁃mages Induced by the 2023 Ms 6.2 Jishishan (Gansu, China) Earthquake[J]. Geomatics and Information Science of Wuhan University,2024, DOI: 10.13203/J.whugis20230497. doi: 10.13203/J.whugis20230497
|
[4] |
徐岳仁, 窦爱霞, 李智敏, 等. 2023年12月18日甘肃积石山Ms 6.2地震触发次生灾害快速评估[J]. 地震, 2024, 44(1): 209-215.
XU Yueren, DOU Aixia, LI Zhimin, et al. Rapid Assessment of Coseismic Hazards Induced by Jishi⁃shan Ms 6.2 Earthquake on December 18, 2023 in Gansu Province, China[J]. Earthquake, 2024, 44(1): 209-215.
|
[5] |
薛腾飞. 基于SAR多特征变化检测的震害建筑物提取研究[D]. 哈尔滨: 中国地震局工程力学研究所, 2017.
XUE Tengfei. Earthquake Damaged Buildings Extraction from SAR Images Using Change Detection Technology Based on Multiple Features[D]. Harbin: Institute of Engineering Mechanics, China Earthquake Administration, 2017.
|
[6] |
DONG L G, SHAN J. A Comprehensive Review of Earthquake-Induced Building Damage Detection with Remote Sensing Techniques[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2013, 84: 85-99.
|
[7] |
BRUNNER D, LEMOINE G, BRUZZONE L. Earthquake Damage Assessment of Buildings Using VHR Optical and SAR Imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(5): 2403-2420.
|
[8] |
GE P L, GOKON H, MEGURO K. A Review on Synthetic Aperture Radar-Based Building Damage Assessment in Disasters[J]. Remote Sensing of Environment, 2020, 240: 111693.
|
[9] |
SUN W D, SHI L, YANG J, et al. Building Collapse Assessment in Urban Areas Using Texture Information from Postevent SAR Data[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9(8): 3792-3808.
|
[10] |
GOKON H, POST J, STEIN E, et al. A Method for Detecting Buildings Destroyed by the 2011 Tohoku Earthquake and Tsunami Using Multitemporal TerraSAR-X Data[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(6): 1277-1281.
|
[11] |
PLANK S. Rapid Damage Assessment by Means of Multi-Temporal SAR—A Comprehensive Review and Outlook to Sentinel-1[J]. Remote Sensing, 2014, 6(6): 4870-4906.
|
[12] |
MASSONNET D, ROSSI M, CARMONA C, et al. The Displacement Field of the Landers Earthquake Mapped by Radar Interferometry[J]. Nature, 1993, 364: 138-142.
|
[13] |
朱建军, 李志伟, 胡俊. InSAR变形监测方法与研究进展[J]. 测绘学报, 2017, 46(10): 1717-1733.
ZHU Jianjun, LI Zhiwei, HU Jun. Research Progress and Methods of InSAR for Deformation Monitoring[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10): 1717-1733.
|
[14] |
刘如, 王腾. 地表三维同震位移与同震滑坡分布之间的关系研究[J]. 中国科学: 地球科学, 2023, 53(7): 1600-1618.
LIU Ru, WANG Teng. The Relationship Between Three-Dimensional Coseismic Displacement and Distribution of Earthquake-Triggered Landslides[J]. Scientia Sinica (Terrae), 2023, 53(7): 1600-1618.
|
[15] |
张双成,赵颖,张成龙,等.联合光学遥感和SAR影像青海玛多Ms 7.4地震同震形变场分析[J]. 武汉大学学报(信息科学版),2024, DOI: 10.13203/j.whugis20220615. doi: 10.13203/j.whugis20220615
ZHANG Shuangcheng, ZHAO Ying, ZHANG Chenglong, et al. Coseismic Deformation Analysis of Qinghai Maduo Ms 7.4 Earthquake Based on Optical Remote Sensing and SAR Images[J]. Geoma⁃tics and Information Science of Wuhan University, 2024, DOI: 10.13203/j.whugis20220615. doi: 10.13203/j.whugis20220615
|
[16] |
蒋弥, 丁晓利, 李志伟, 等. 用L波段和C波段SAR数据研究汶川地震的同震形变[J]. 大地测量与地球动力学, 2009, 29(1): 21-26.
JIANG Mi, DING Xiaoli, LI Zhiwei, et al. Study on Coseismic Deformation of Wenchuan Earthquake by Use of L and C Wavebands of SAR Data[J]. Journal of Geodesy and Geodynamics, 2009, 29(1): 21-26.
|
[17] |
李永生,李强,焦其松,等. 陆探一号SAR卫星星座在地震行业的应用与展望[J]. 武汉大学学报(信息科学版), 2024, 49(10): 1741-1752.
LI Yongsheng, LI Qiang, JIAO Qisong, et al. Application and Prospects of Land Exploration SAR Satellite Constellation in the Earthquake Industry [J]. Geomatics and Information Science of Wuhan University, 2024, 49(10): 1741-1752.
|
[18] |
ELGHARBAWI T, ZARZOURA F. Damage Detection Using SAR Coherence Statistical Analysis, Application to Beirut, Lebanon[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2021, 173: 1-9.
|
[19] |
KARIMZADEH S, MATSUOKA M, MIYAJIMA M, et al. Sequential SAR Coherence Method for the Monitoring of Buildings in Sarpole-Zahab, Iran[J]. Remote Sensing, 2018, 10(8): 1255.
|
[20] |
HASANLOU M, SHAH-HOSSEINI R, SEYDI S T, et al. Earthquake Damage Region Detection by Multitemporal Coherence Map Analysis of Radar and Multispectral Imagery[J]. Remote Sensing, 2021, 13(6): 1195.
|
[21] |
WATANABE M, THAPA R B, OHSUMI T, et al. Detection of Damaged Urban Areas Using Interferometric SAR Coherence Change with PALSAR-2[J]. Earth, Planets and Space, 2016, 68(1): 131.
|
[22] |
CHO S, XIU H Y, MATSUOKA M. Backscatte⁃ring Characteristics of SAR Images in Damaged Buildings Due to the 2016 Kumamoto Earthquake[J]. Remote Sensing, 2023, 15(8): 2181.
|
[23] |
CHEN S W, WANG X S, SATO M. Urban Da⁃mage Level Mapping Based on Scattering Mechanism Investigation Using Fully Polarimetric SAR Data for the 3.11 East Japan Earthquake[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(12): 6919-6929.
|
[24] |
KIM M, PARK S E, LEE S J. Detection of Da⁃maged Buildings Using Temporal SAR Data with Different Observation Modes[J]. Remote Sensing, 2023, 15(2): 308.
|
[25] |
CHEN S W, SATO M. Tsunami Damage Investigation of Built-Up Areas Using Multitemporal Spaceborne Full Polarimetric SAR Images[J]. IEEE Transactions on Geoscience and Remote Sen⁃sing, 2013, 51(4): 1985-1997.
|
[26] |
ZHAO J Q, YANG J, LU Z, et al. An Unsupervised Method of Change Detection in Multi-temporal PolSAR Data Using a Test Statistic and an Improved K & I Algorithm[J]. Applied Sciences, 2017, 7(12): 1297.
|
[27] |
CONRADSEN K, NIELSEN A A, SKRIVER H. Determining the Points of Change in Time Series of Polarimetric SAR Data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(5): 3007-3024.
|
[28] |
CHEN Q H, YANG H, LI L L, et al. A Novel Statistical Texture Feature for SAR Building Damage Assessment in Different Polarization Modes[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13: 154-165.
|
[29] |
JI Y Q, SUMANTYO J T S, CHUA M Y, et al. Earthquake/Tsunami Damage Level Mapping of Urban Areas Using Full Polarimetric SAR Data[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(7): 2296-2309.
|
[30] |
LINDSEY E O, NATSUAKI R, XU X H, et al. Line-of-Sight Displacement from ALOS-2 Interfe-rometry: Mw 7.8 Gorkha Earthquake and Mw 7.3 Aftershock[J]. Geophysical Research Letters, 2015, 42(16): 6655-6661.
|
[31] |
FUJIWARA S, YARAI H, KOBAYASHI T, et al. Small-Displacement Linear Surface Ruptures of the 2016 Kumamoto Earthquake Sequence Detected by ALOS-2 SAR Interferometry[J]. Earth, Planets and Space, 2016, 68(1): 160.
|
[32] |
ARCINIEGAS G A, BIJKER W, KERLE N, et al. Coherence- and Amplitude-Based Analysis of Seismogenic Damage in Bam, Iran, Using ENVISAT ASAR Data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(6): 1571-1581.
|
[33] |
SUN X L, CHEN X, YANG L, et al. Using InSAR and PolSAR to Assess Ground Displacement and Building Damage After a Seismic Event: Case Study of the 2021 Baicheng Earthquake[J]. Remote Sensing, 2022, 14(13): 3009.
|
[34] |
MARCONCINI M, METZ-MARCONCINI A, ESCH T, et al. Understanding Current Trends in Global Urbanisation—The World Settlement Footprint Suite[J]. GI_Forum, 2021, 9(1): 33-38.
|
[35] |
ZHAO J Q, CHANG Y L, YANG J, et al. A Novel Change Detection Method Based on Statistical Distribution Characteristics Using Multi-temporal PolSAR Data[J]. Sensors, 2020, 20(5): 1508.
|
[36] |
ZHAO F, MALLORQUI J J. Coherency Matrix Decomposition-Based Polarimetric Persistent Scatterer Interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(10): 7819-7831.
|
[37] |
国家防灾减灾救灾委员会办公室应急管理部发布2023年全国十大自然灾害[EB/OL]. (2024-01-20). https://www.mem.gov.cn/xw/yjglbgzdt/ 202401/t20240120_475696.shtml.
Office of the National Disaster Prevention, Mitigation and Relief Committee and the Ministry of Emergency Management Released the Top Ten Natural Disasters in China in 2023 [EB/OL]. (2024-01-20). https://www.mem.gov.cn/xw/yjglbgzdt/202401/t20240120_475696.shtml.
|
[38] |
WERNER C, WEGMÜLLER U, STROZZI T, et al. GAMMA SAR and Interferometric Processing Software[C]//ERS-Envisat Symposium, Gothenburg, Sweden, 2000.
|
[39] |
杨九元, 温扬茂, 许才军. InSAR 观测揭示的 2023 年甘肃积石山 Ms 6.2 地震发震构造[J]. 武汉大学学报 (信息科学版), 2024, DOI: 10.13203/j.whugis20230501. doi: 10.13203/j.whugis20230501
YANG Jiuyuan, WEN Yangmao, XU Caijun. Seismogenic Fault Structure of the 2023 Ms 6.2 Jishishan (Gansu,China) Earthquake Revealed by InSAR Observations[J]. Geomatics and Information Science of Wuhan University,2024, DOI: 10.13203/j.whugis20230501. doi: 10.13203/j.whugis20230501
|
[40] |
应急管理部发布甘肃积石山6.2级地震烈度图[EB/OL].(2023-12-22). https://www.mem.gov.cn/xw/yjglbgzdt/202312/t20231222_472849.shtml.
Emergency Management Department Issued Jishi⁃shan 6.2 Earthquake Intensity Figure in Gansu [EB/OL]. (2023-12-22). https://www.mem.gov.cn/xw/yjglbgzdt/202312/t20231222_472849.shtml.
|
[1] | YANG Wan-ling, GAO Wu-tong, LIU Lu, WANG Bo, YAN Jian-guo. Orbit determination and accuracy analysis for comet 311P based on space-based and ground-based optical data[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20220710 |
[2] | LI Duoduo, ZHOU Xuhua, LI Kai, XU Kexin, TAO Enzhe. Precise Orbit Determination for HY2B Using On-Board GPS Data[J]. Geomatics and Information Science of Wuhan University, 2023, 48(12): 2060-2068. DOI: 10.13203/j.whugis20210303 |
[3] | WANG Bo, LIU Lu, YAN Jianguo, GAO Wutong. Development of Asteroid Optical Determination Software and Data Processing Analysis[J]. Geomatics and Information Science of Wuhan University, 2023, 48(2): 277-284. DOI: 10.13203/j.whugis20200195 |
[4] | ZHOU Xuhua, WANG Xiaohui, ZHAO Gang, PENG Hailong, WU Bin. The Precise Orbit Determination for HY2A Satellite Using GPS,DORIS and SLR Data[J]. Geomatics and Information Science of Wuhan University, 2015, 40(8): 1000-1005. DOI: 10.13203/j.whugis20130730 |
[5] | LI Wenwen, LI Min, SHI Chuang, ZHAO Qile. Jason-2 Precise Orbit Determination Using DORIS RINEX Phase Data[J]. Geomatics and Information Science of Wuhan University, 2013, 38(10): 1207-1211. |
[6] | ZHANG Xiaohong, LI Pan, ZUO Xiang. Kinematic Precise Orbit Determination Based on Ambiguity-Fixed PPP[J]. Geomatics and Information Science of Wuhan University, 2013, 38(9): 1009-1013. |
[7] | LI Min, ZHAO Qile, GE Maorong. Simulation Research on Precise Orbit Determination for GIOVE-A[J]. Geomatics and Information Science of Wuhan University, 2008, 33(8): 818-820. |
[8] | ZHAO Qile, SHI Chuang, LIU Xianglin, GE Maorong. Determination of Precise Orbit Using Onboard GPS Data for Gravity Modeling Oriented Satellites[J]. Geomatics and Information Science of Wuhan University, 2008, 33(8): 810-814. |
[9] | ZHAO Qile, LIU Jingnan, GE Maorong, SHI Chuang. Precision Orbit Determination of CHAMP Satellite with cm-level Accuracy[J]. Geomatics and Information Science of Wuhan University, 2006, 31(10): 879-882. |
[10] | GUO Jinlai, ZHAO Qile, GUO Daoyu. Reducing the Influence of Gravity Model Error on Precise Orbit Determination of Low Earth Orbit Satellites[J]. Geomatics and Information Science of Wuhan University, 2006, 31(4): 293-296. |