Citation: | LIN Xueyuan, SUN Weiwei. Nonlinear Maximum Correntropy UKF Algorithm for GNSS/SINS Integrated Navigation System[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20240045 |
[1] |
Lin Xueyuan, Yao Libo, Sun Weiwei, et al. Integrated Navigation System’s State Estimation and Application based on Multi-Scale[M]. Science Press, 2020.11.(林雪原, 姚力波, 孙炜玮, 等. 基于多尺度的组合导航系统状态估计及应用[M]. 科学出版社, 2020.11.)
|
[2] |
Qin Yongyuan, Zhang Hongyue, Wang Shuhua. Kalman filter and integrated navigation principle[M]. Xi’an: Northwest University of Technology Press, 2012. (秦永元, 张洪钺, 王淑华. 卡尔曼滤波与组合导航原理[M]. 西安: 西北工业大学出版社, 2012.)
|
[3] |
Ding Guoqiang, Ma Junxia, Xiong Ming, et al. The SINS’ SRC-KF Attitude Estimation Modeling Algorithm[J]. Geomatics and Information Science of Wuhan University, 2016, 41(3): 367-372.(丁国强, 马军霞, 熊明, 等. SINS的SRC-KF姿态估计算法[J]. 武汉大学学报(信息科学版), 2016, 41(3): 367-372.)
|
[4] |
Zhang Xiaohong, Tao Xianlu, Wang Yingzhe, et al. MEMS-Enhanced Smartphone GNSS High-Precision Positioning for Vehicular Navigation in Urban Conditions[J]. Geomatics and Information Science of Wuhan University, 2022, 47(10): 1740-1749. (张小红, 陶贤露, 王颖喆, 等. 城市场景智能手机GNSS/ MEMS融合车载高精度定位[J]. 武汉大学学报信息科学版, 2022, 47(10): 1740-1749.)
|
[5] |
Julier S, Uhlmann J, Durrant-Whyte H F. A new method for the nonlinear transformation of means and covariances in filters and estimators[J]. IEEE Transactions on automatic control, 2000, 45(3): 477-482.
|
[6] |
Li Rongbing, Liu Jianye, Lai Jizhou, et al. Sigma-Point direct Kalman filtering algorithm for inertialintegrated navigation system[J]. Control and Decision, 2009, 24(7): 1018-1022.(李荣冰, 刘建业, 赖际舟, 等. Sigma-Point直接式卡尔曼滤波惯性组合导航算法[J]. 控制与决策, 2009, 24(7): 1018-1022)
|
[7] |
Wu Xiaohang. Fitering and Information Fusion Algorithm Under Non-ideal Conditions for Nonlinear Systems[D]. Harbin Institute of Technology, 2019.6.)(吴骁航. 非理想情况下非线性系统的滤波及信息融合算法[D]. 哈尔滨工业大学, 2019.6.)
|
[8] |
Huang Y, Zhang Y, Li N, et al. A Robust Gaussian Approximate Fixed-Interval Smoother for Nonlinear Systems with Heavy-Tailed Process and Measurement Noises[J]. IEEE Signal Processing Letters. 2016, 23(4): 468-472.
|
[9] |
Huang Y L, Zhang Y G, Wu Z M, et al. Robust Gaussian Approximate Filter and Smoother with Colored Heavy Tailed Measurement Noise[J]. Acta Automatica Sinica, 2017, 43(1): 114-131.
|
[10] |
Lim C P, Volakis J L, Sertel K, et al. Indoor Propagation Models Based on Rigorous Methods for Site-Specific Multipath Environments[J]. IEEE Transactions on Antennas Propagation, 2006, 54(6): 1718-1725.
|
[11] |
Chen Badong, Xing Lei, Zhao Haiquan, et al. Generalized correntropy for robust adaptive filtering[J]. IEEE Transactions on Signal Processing, 2016, 64(13): 3376–3387.
|
[12] |
Wang Ying, Pan Chunhong, Xiang Shiming, et al. Robust hyperspectral unmixing with correntropy-based metric[J]. IEEE Transactions on Image Processing, 2015, 24(11):4027–404
|
[13] |
Shi Liming, Lin Yun. Convex combination of adaptive filters under the maximum correntropy criterion in impulsive interference[J]. IEEE Signal Processing Letters, 2014, 21(11):1385–1388.
|
[14] |
Chen Badong, Xing Lei, Liang Junli, et al. Steady-state mean-square error analysis for adaptive filtering under the maximum correntropy criterion[J]. IEEE Signal Processing Letters, 2014, 21(7):880–884.
|
[15] |
Xu Kaijun, Zhang Rong, Yang Yong, et al. Research on GPS/INS Integrated Navigation Fusion Algorithm Based on Maximum Correlation Entropy[J]. Modern Computer, 2022, 28(17): 52-56.(徐开俊, 张榕, 杨泳, 等. 基于最大相关熵的GPS/INS组合导航融合算法研究[J]. 现代计算机, 2022, 28(17): 52-56.)
|
[16] |
Zhou Weichao. Integrated navigation method based on maximum joint entropy Kalman filter[J]. Information Technology, 2022, (9):78-83.(周伟超. 基于最大相关熵卡尔曼滤波的组合导航方法[J]. 信息技术, 2022, (9):78-83.)
|
[17] |
Luo Kaixin, Wu Meiping, Fan Ying. Robust adaptive filtering based on maximum entropy method and its application[J]. Systems Engineering and Electronics, 2020, 42(3): 667-673.(罗凯鑫, 吴美平, 范颖. 基于最大熵方法的鲁棒自适应滤波及其应用[J]. 系统工程与电子技术, 2020, 42(3): 667-673.)
|
[18] |
Hou Bowen, He Zhangming, Li Dong, et al. Maximum Correntropy Unscented Kalman Filter for Ballistic Missile Navigation System based on SINS/CNS DeeplyIntegrated Mode[J]. Sensors, 2018(18): 1724-1748.
|
[19] |
Liu Xi, Qu Hua, Zhao Jihong, et al. Maximum Correntropy Unscented Kalman Filter for Spacecraft Relative State Estimation[J]. Sensors, 2016(16): 1530-1545.
|
[20] |
Gao Bingbing, Gao Shesheng, Hu Gaoge, et al. Adaptive UKF based on Maximumu Likeliood Principle and Receding Horizon Estimation[J]. System Engineering and Electrics, 2016, 38(): 1629-1637.(高兵兵, 高社生, 胡高歌, 等. 基于极大似然准则与滚动时域估计的自适应UKF算法[J]. 系统工程与电子技术, 2016, 38(): 1629-1637.)
|
[21] |
Lin Xueyuan, Liu Lili, Dong Yunyun, et al. Improved Adaptive Filtering Algorithm for GNSS/SINS Integrated Navigation System[J]. Geomatics and Information Science of Wuhan University, 2023, 48(1): 127-134.(林雪原, 刘丽丽, 董云云, 等. 改进的GNSS/SINS组合导航系统自适应滤波算法[J]. 武汉大学学报.信息科学版, 2023, 48(1): 127-134.)
|
[22] |
(林雪原, 王萍, 许家龙, 等. 基于序贯UKF的GNSS/CNS/SINS组合导航最优融合算法[J]. 大地测量与地球动力学, 2022, 42(12): 1211-1215.)
Lin Xueyuan, Wang Ping, Xu Jialong, et al. An Optimal Fusion Algorithm for GNSS/CNS/SINS Integrated Navigation based on Sequential UKF[J]. Journal of Geodesy and Geodynamics, 2022, 42(12): 1211-1215.)
|
[23] |
Zhu Luing, Sun Weiwei, Liu Chengming, et al. Research on federal UKF algorithm for multi-sensor integrated navigation system[J]. Journal of Electronic Measurement and Instrumentation, 2022, 36(7): 91-98.(朱璐瑛, 孙炜玮, 刘成铭, 等. 多传感器组合导航系统的联邦UKF算法 研究 [J]. 电子测量与仪器学报, 2022, 36(7): 91-98.)
|
[24] |
Chen Badong, Liu Xi, Zhao Haiquan, et al. Maximum correntropy Kalman filter [J]. Automatica, 2017, 76: 70-77.
|
[25] |
Chen Badong, Wang Jianji, Zhao Haiquan, et al. Convergence of a Fixed-Point Algorithm under Maximum Correntropy Criterion[J]. IEEE Signal Processing Letters, 2015, 22(10): 1723-1727.
|
[26] |
YANG Y, SONG L, XU T. Robust Estimator for Correlated Observations based on Bifactor Equivalent Weights[J]. Journal of Geodesy, 2002(76): 353-358.
|
[1] | HUANG Li, GONG Zhipeng, LIU Fanfan, CHENG Qimin. Bus Passenger Flow Detection Model Based on Image Cross-Scale Feature Fusion and Data Augmentation[J]. Geomatics and Information Science of Wuhan University, 2024, 49(5): 700-708. DOI: 10.13203/j.whugis20220690 |
[2] | HOU Zhaoyang, LÜ Kaiyun, GONG Xunqiang, ZHI Junhao, WANG Nan. Remote Sensing Image Fusion Based on Low-Level Visual Features and PAPCNN in NSST Domain[J]. Geomatics and Information Science of Wuhan University, 2023, 48(6): 960-969. DOI: 10.13203/j.whugis20220168 |
[3] | GUO Chunxi, GUO Xinwei, NIE Jianliang, WANG Bin, LIU Xiaoyun, WANG Haitao. Establishment of Vertical Movement Model of Chinese Mainland by Fusion Result of Leveling and GNSS[J]. Geomatics and Information Science of Wuhan University, 2023, 48(4): 579-586. DOI: 10.13203/j.whugis20200167 |
[4] | TU Chao-hu, YI Yao-hua, WANG Kai-li, PENG Ji-bing, YIN Ai-guo. Adaptive Multi-level Feature Fusion for Scene Ancient Chinese Text Recognition[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20230176 |
[5] | LIN Dong, QIN Zhiyuan, TONG Xiaochong, QIU Chunping, LI He. Objected-Based Structural Feature Extraction Method Using Spectral and Morphological Information[J]. Geomatics and Information Science of Wuhan University, 2018, 43(5): 704-710. DOI: 10.13203/j.whugis20150627 |
[6] | LIN Xueyuan. Two-Level Distributed Fusion Algorithm for Multisensor Integrated Navigation System[J]. Geomatics and Information Science of Wuhan University, 2012, 37(3): 274-277. |
[7] | XU Kai, QIN Kun, DU Yi. Classification for Remote Sensing Data with Decision Level Fusion[J]. Geomatics and Information Science of Wuhan University, 2009, 34(7): 826-829. |
[8] | ZHAO Yindi, ZHANG Liangpei, LI Pingxiang. A Texture Classification Algorithm Based on Feature Fusion[J]. Geomatics and Information Science of Wuhan University, 2006, 31(3): 278-281. |
[9] | JIA Yonghong, LI Deren. An Approach of Classification Based on Pixel Level and Decision Level Fusion of Multi-source Images in Remote Sensing[J]. Geomatics and Information Science of Wuhan University, 2001, 26(5): 430-434. |
[10] | Li Linhui, Wang Yu, Liu Yueyan, Li Lei, Huang Jincheng, Zhou Yi, Cao Songlin. A Fast Fusion Model for Multi-Source Heterogeneous Data Of Real Estate Based on Feature Similarity[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20220742 |