LIN Xueyuan, SUN Weiwei. Nonlinear Maximum Correntropy UKF Algorithm for GNSS/SINS Integrated Navigation System[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20240045
Citation: LIN Xueyuan, SUN Weiwei. Nonlinear Maximum Correntropy UKF Algorithm for GNSS/SINS Integrated Navigation System[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20240045

Nonlinear Maximum Correntropy UKF Algorithm for GNSS/SINS Integrated Navigation System

More Information
  • Received Date: September 14, 2024
  • Objectives: Unscented Kalman filter (UKF) is an effective method to solve the nonlinear filtering of GNSS/SINS integrated navigation system. UKF shows good performance in Gaussian noise, but its performance will be seriously degraded in non-Gaussian noise, especially when the system is interfered by some heavy tail pulse noise. In order to improve the robustness of UKF against heavy tail pulse noise, this paper proposed a maximum correntropy UKF (MCUKF) algorithm for GNSS/SINS integrated navigation system is proposed in this paper. Methods: Firstly, the nonlinear system model of GNSS/SINS integrated navigation system is established, which is characterized by nonlinear state equation and linear measurement variance. Then, a prior estimation of the state and its covariance matrix is obtained by using the unscented transform (UT) of UKF. Finally, the maximum correntropy criterion and statistical linear regression model are used to obtain the posterior estimation of the state and its covariance matrix, and the fixed point iteration of MCUKF algorithm is designed. Results: The simulation results show that the performance of UKF is slightly better than MCUKF in Gaussian noise; Compared with UKF, MCUKF with a core bandwidth of 5 can improve position accuracy by 13.4% and velocity accuracy by 10.3%; Compared with AKF, MCUKF can improve position accuracy by 8.8% and speed accuracy by 7.5%. Conclusions: The experimental results show that the filtering performance of MCUKF is obviously better than that of UKF at small core bandwidth, which can improve the filtering accuracy of integrated navigation system in complex environment.
  • [1]
    Lin Xueyuan, Yao Libo, Sun Weiwei, et al. Integrated Navigation System’s State Estimation and Application based on Multi-Scale[M]. Science Press, 2020.11.(林雪原, 姚力波, 孙炜玮, 等. 基于多尺度的组合导航系统状态估计及应用[M]. 科学出版社, 2020.11.)
    [2]
    Qin Yongyuan, Zhang Hongyue, Wang Shuhua. Kalman filter and integrated navigation principle[M]. Xi’an: Northwest University of Technology Press, 2012. (秦永元, 张洪钺, 王淑华. 卡尔曼滤波与组合导航原理[M]. 西安: 西北工业大学出版社, 2012.)
    [3]
    Ding Guoqiang, Ma Junxia, Xiong Ming, et al. The SINS’ SRC-KF Attitude Estimation Modeling Algorithm[J]. Geomatics and Information Science of Wuhan University, 2016, 41(3): 367-372.(丁国强, 马军霞, 熊明, 等. SINS的SRC-KF姿态估计算法[J]. 武汉大学学报(信息科学版), 2016, 41(3): 367-372.)
    [4]
    Zhang Xiaohong, Tao Xianlu, Wang Yingzhe, et al. MEMS-Enhanced Smartphone GNSS High-Precision Positioning for Vehicular Navigation in Urban Conditions[J]. Geomatics and Information Science of Wuhan University, 2022, 47(10): 1740-1749. (张小红, 陶贤露, 王颖喆, 等. 城市场景智能手机GNSS/ MEMS融合车载高精度定位[J]. 武汉大学学报信息科学版, 2022, 47(10): 1740-1749.)
    [5]
    Julier S, Uhlmann J, Durrant-Whyte H F. A new method for the nonlinear transformation of means and covariances in filters and estimators[J]. IEEE Transactions on automatic control, 2000, 45(3): 477-482.
    [6]
    Li Rongbing, Liu Jianye, Lai Jizhou, et al. Sigma-Point direct Kalman filtering algorithm for inertialintegrated navigation system[J]. Control and Decision, 2009, 24(7): 1018-1022.(李荣冰, 刘建业, 赖际舟, 等. Sigma-Point直接式卡尔曼滤波惯性组合导航算法[J]. 控制与决策, 2009, 24(7): 1018-1022)
    [7]
    Wu Xiaohang. Fitering and Information Fusion Algorithm Under Non-ideal Conditions for Nonlinear Systems[D]. Harbin Institute of Technology, 2019.6.)(吴骁航. 非理想情况下非线性系统的滤波及信息融合算法[D]. 哈尔滨工业大学, 2019.6.)
    [8]
    Huang Y, Zhang Y, Li N, et al. A Robust Gaussian Approximate Fixed-Interval Smoother for Nonlinear Systems with Heavy-Tailed Process and Measurement Noises[J]. IEEE Signal Processing Letters. 2016, 23(4): 468-472.
    [9]
    Huang Y L, Zhang Y G, Wu Z M, et al. Robust Gaussian Approximate Filter and Smoother with Colored Heavy Tailed Measurement Noise[J]. Acta Automatica Sinica, 2017, 43(1): 114-131.
    [10]
    Lim C P, Volakis J L, Sertel K, et al. Indoor Propagation Models Based on Rigorous Methods for Site-Specific Multipath Environments[J]. IEEE Transactions on Antennas Propagation, 2006, 54(6): 1718-1725.
    [11]
    Chen Badong, Xing Lei, Zhao Haiquan, et al. Generalized correntropy for robust adaptive filtering[J]. IEEE Transactions on Signal Processing, 2016, 64(13): 3376–3387.
    [12]
    Wang Ying, Pan Chunhong, Xiang Shiming, et al. Robust hyperspectral unmixing with correntropy-based metric[J]. IEEE Transactions on Image Processing, 2015, 24(11):4027–404
    [13]
    Shi Liming, Lin Yun. Convex combination of adaptive filters under the maximum correntropy criterion in impulsive interference[J]. IEEE Signal Processing Letters, 2014, 21(11):1385–1388.
    [14]
    Chen Badong, Xing Lei, Liang Junli, et al. Steady-state mean-square error analysis for adaptive filtering under the maximum correntropy criterion[J]. IEEE Signal Processing Letters, 2014, 21(7):880–884.
    [15]
    Xu Kaijun, Zhang Rong, Yang Yong, et al. Research on GPS/INS Integrated Navigation Fusion Algorithm Based on Maximum Correlation Entropy[J]. Modern Computer, 2022, 28(17): 52-56.(徐开俊, 张榕, 杨泳, 等. 基于最大相关熵的GPS/INS组合导航融合算法研究[J]. 现代计算机, 2022, 28(17): 52-56.)
    [16]
    Zhou Weichao. Integrated navigation method based on maximum joint entropy Kalman filter[J]. Information Technology, 2022, (9):78-83.(周伟超. 基于最大相关熵卡尔曼滤波的组合导航方法[J]. 信息技术, 2022, (9):78-83.)
    [17]
    Luo Kaixin, Wu Meiping, Fan Ying. Robust adaptive filtering based on maximum entropy method and its application[J]. Systems Engineering and Electronics, 2020, 42(3): 667-673.(罗凯鑫, 吴美平, 范颖. 基于最大熵方法的鲁棒自适应滤波及其应用[J]. 系统工程与电子技术, 2020, 42(3): 667-673.)
    [18]
    Hou Bowen, He Zhangming, Li Dong, et al. Maximum Correntropy Unscented Kalman Filter for Ballistic Missile Navigation System based on SINS/CNS DeeplyIntegrated Mode[J]. Sensors, 2018(18): 1724-1748.
    [19]
    Liu Xi, Qu Hua, Zhao Jihong, et al. Maximum Correntropy Unscented Kalman Filter for Spacecraft Relative State Estimation[J]. Sensors, 2016(16): 1530-1545.
    [20]
    Gao Bingbing, Gao Shesheng, Hu Gaoge, et al. Adaptive UKF based on Maximumu Likeliood Principle and Receding Horizon Estimation[J]. System Engineering and Electrics, 2016, 38(): 1629-1637.(高兵兵, 高社生, 胡高歌, 等. 基于极大似然准则与滚动时域估计的自适应UKF算法[J]. 系统工程与电子技术, 2016, 38(): 1629-1637.)
    [21]
    Lin Xueyuan, Liu Lili, Dong Yunyun, et al. Improved Adaptive Filtering Algorithm for GNSS/SINS Integrated Navigation System[J]. Geomatics and Information Science of Wuhan University, 2023, 48(1): 127-134.(林雪原, 刘丽丽, 董云云, 等. 改进的GNSS/SINS组合导航系统自适应滤波算法[J]. 武汉大学学报.信息科学版, 2023, 48(1): 127-134.)
    [22]
    (林雪原, 王萍, 许家龙, 等. 基于序贯UKF的GNSS/CNS/SINS组合导航最优融合算法[J]. 大地测量与地球动力学, 2022, 42(12): 1211-1215.)

    Lin Xueyuan, Wang Ping, Xu Jialong, et al. An Optimal Fusion Algorithm for GNSS/CNS/SINS Integrated Navigation based on Sequential UKF[J]. Journal of Geodesy and Geodynamics, 2022, 42(12): 1211-1215.)
    [23]
    Zhu Luing, Sun Weiwei, Liu Chengming, et al. Research on federal UKF algorithm for multi-sensor integrated navigation system[J]. Journal of Electronic Measurement and Instrumentation, 2022, 36(7): 91-98.(朱璐瑛, 孙炜玮, 刘成铭, 等. 多传感器组合导航系统的联邦UKF算法 研究 [J]. 电子测量与仪器学报, 2022, 36(7): 91-98.)
    [24]
    Chen Badong, Liu Xi, Zhao Haiquan, et al. Maximum correntropy Kalman filter [J]. Automatica, 2017, 76: 70-77.
    [25]
    Chen Badong, Wang Jianji, Zhao Haiquan, et al. Convergence of a Fixed-Point Algorithm under Maximum Correntropy Criterion[J]. IEEE Signal Processing Letters, 2015, 22(10): 1723-1727.
    [26]
    YANG Y, SONG L, XU T. Robust Estimator for Correlated Observations based on Bifactor Equivalent Weights[J]. Journal of Geodesy, 2002(76): 353-358.
  • Related Articles

    [1]HUANG Li, GONG Zhipeng, LIU Fanfan, CHENG Qimin. Bus Passenger Flow Detection Model Based on Image Cross-Scale Feature Fusion and Data Augmentation[J]. Geomatics and Information Science of Wuhan University, 2024, 49(5): 700-708. DOI: 10.13203/j.whugis20220690
    [2]HOU Zhaoyang, LÜ Kaiyun, GONG Xunqiang, ZHI Junhao, WANG Nan. Remote Sensing Image Fusion Based on Low-Level Visual Features and PAPCNN in NSST Domain[J]. Geomatics and Information Science of Wuhan University, 2023, 48(6): 960-969. DOI: 10.13203/j.whugis20220168
    [3]GUO Chunxi, GUO Xinwei, NIE Jianliang, WANG Bin, LIU Xiaoyun, WANG Haitao. Establishment of Vertical Movement Model of Chinese Mainland by Fusion Result of Leveling and GNSS[J]. Geomatics and Information Science of Wuhan University, 2023, 48(4): 579-586. DOI: 10.13203/j.whugis20200167
    [4]TU Chao-hu, YI Yao-hua, WANG Kai-li, PENG Ji-bing, YIN Ai-guo. Adaptive Multi-level Feature Fusion for Scene Ancient Chinese Text Recognition[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20230176
    [5]LIN Dong, QIN Zhiyuan, TONG Xiaochong, QIU Chunping, LI He. Objected-Based Structural Feature Extraction Method Using Spectral and Morphological Information[J]. Geomatics and Information Science of Wuhan University, 2018, 43(5): 704-710. DOI: 10.13203/j.whugis20150627
    [6]LIN Xueyuan. Two-Level Distributed Fusion Algorithm for Multisensor Integrated Navigation System[J]. Geomatics and Information Science of Wuhan University, 2012, 37(3): 274-277.
    [7]XU Kai, QIN Kun, DU Yi. Classification for Remote Sensing Data with Decision Level Fusion[J]. Geomatics and Information Science of Wuhan University, 2009, 34(7): 826-829.
    [8]ZHAO Yindi, ZHANG Liangpei, LI Pingxiang. A Texture Classification Algorithm Based on Feature Fusion[J]. Geomatics and Information Science of Wuhan University, 2006, 31(3): 278-281.
    [9]JIA Yonghong, LI Deren. An Approach of Classification Based on Pixel Level and Decision Level Fusion of Multi-source Images in Remote Sensing[J]. Geomatics and Information Science of Wuhan University, 2001, 26(5): 430-434.
    [10]Li Linhui, Wang Yu, Liu Yueyan, Li Lei, Huang Jincheng, Zhou Yi, Cao Songlin. A Fast Fusion Model for Multi-Source Heterogeneous Data Of Real Estate Based on Feature Similarity[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20220742

Catalog

    Article views (60) PDF downloads (10) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return