LIN Dong, QIN Zhiyuan, TONG Xiaochong, QIU Chunping, LI He. Objected-Based Structural Feature Extraction Method Using Spectral and Morphological Information[J]. Geomatics and Information Science of Wuhan University, 2018, 43(5): 704-710. DOI: 10.13203/j.whugis20150627
Citation: LIN Dong, QIN Zhiyuan, TONG Xiaochong, QIU Chunping, LI He. Objected-Based Structural Feature Extraction Method Using Spectral and Morphological Information[J]. Geomatics and Information Science of Wuhan University, 2018, 43(5): 704-710. DOI: 10.13203/j.whugis20150627

Objected-Based Structural Feature Extraction Method Using Spectral and Morphological Information

Funds: 

The National Natural Science Foundation of China 41501506

More Information
  • Author Bio:

    LIN Dong, PhD candidate, specializes in high resolution imagery segmentation. E-mail: lindong_hb59@163.com

  • Received Date: October 22, 2015
  • Published Date: May 04, 2018
  • In order to overcome the drawbacks of using either spectral or morphological features for traditional image segmentation methods, a multi-scale image segmentation method using both the spectral and morphological information is proposed. First of all, Differential Morphological Profiles are combined with spectral features to form spectral-morphological characteristics. Then, Hausdorff distance is implemented to calculate the weight of edges based on graph theory and minimum spanning tree algorithm Kruskal is applied to complete the initial segmentation of color images. Finally, the obtained segmentation result is refined by a region merging procedure with the regional heterogeneous criteria proposed in fractal network evolution. Furthermore, object-based Gray Level Co-occurrence Matrix and object-based Pixel Shape Index are proposed on the basis of segmentation results. Experimental results show that the proposed segmentation method is more effective and more efficient than eCognition software 8.0 and Meanshift algorithm. In addition, object-based Gray Level Co-occurrence Matrix and object-based Pixel Shape Index are apparently better than traditional pixel-based methods.
  • [1]
    Dell'Acqua F, Gamba P, Ferrari A, et al.. Exploiting Spectral and Spatial Information in Hyper-spectral Urban Data with High Resolution[J]. IEEE Geoscience Remote Sensing letters, 2004, 1(4):322-326
    [2]
    张锦水, 何春阳, 潘耀忠, 等.基于SVM的多源信息复合的高空间分辨率遥感数据分类研究[J].遥感学报, 2006, 10(l):49-57 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ygxb200601008

    Zhang Jinshui, He Chunyang, Pan Yaozhong, et al. The High Spatial Resolution Remote Sensing Image Classification Based on SVM Method with the Multi-Source Data[J]. Journal of Remote Sensing, 2006, 10(l):49-57 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ygxb200601008
    [3]
    Huang Xin, Zhang Liangpei, Li Pingxiang. Classification and Extraction of Spatial Features in Urban Areas Using High-Resolution Multispectral Imagery[J]. IEEE Geoscience and Remote Sensing Letters, 2007, 4(2):260-264 doi: 10.1109/LGRS.2006.890540
    [4]
    林栋, 秦志远, 杨婧玮, 等.高分辨率遥感影像多特征协同地物分类方法[J].测绘科学技术学报, 2014, 31(2):167-172 http://www.cnki.com.cn/Article/CJFDTotal-JFJC201402014.htm

    Lin Dong, Qin Zhiyuan, Yang Jingwei, et al. High Resolution Remotely Sensed Image Classification Method of Multi-Feature Collaboration[J]. Journal of Geomatics Science and Technology, 2014, 31(2):167-172 http://www.cnki.com.cn/Article/CJFDTotal-JFJC201402014.htm
    [5]
    Blaschke T. Object Based Image Analysis for Remote Sensing[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2010, 65(1):2-16 doi: 10.1016/j.isprsjprs.2009.06.004
    [6]
    Blaschke T, Hay G J, Kelly M, et al. Geographic Object Based Image Analysis-Towards a New Paradigm[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 87:180-191 doi: 10.1016/j.isprsjprs.2013.09.014
    [7]
    周亚男, 骆剑承, 程熙, 等.多特征融入的自适应遥感影像多尺度分割[J].武汉大学学报·信息科学版, 2013, 38(1):19-22 http://kns.cnki.net/KCMS/detail/detail.aspx?filename=whch201301005&dbname=CJFD&dbcode=CJFQ

    Zhou Yanan, Luo Jiancheng, Cheng Xi, et al. Adaptive Multi-scale Remote Sensing Imagery Segmentation Incorporated Multiple Features[J]. Geomatics and Information Science of Wuhan University, 2013, 38(1):19-22 http://kns.cnki.net/KCMS/detail/detail.aspx?filename=whch201301005&dbname=CJFD&dbcode=CJFQ
    [8]
    Fauvel M, Benediktsson J A, Chanussot J, et al. Spectral and Spatial Classification of Hyperspectral Data Using SVMs and Morphological Profiles[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(11):3804-3814 doi: 10.1109/TGRS.2008.922034
    [9]
    Dalla M, Benediktsson J A, Waske B, et al. Morphological Attribute Profiles for the Analysis of Very High Resolution Images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(10):3747-3762 doi: 10.1109/TGRS.2010.2048116
    [10]
    Liu Jing, Li Peijun, Wang Xue. A New Segmentation Method for very High Resolution Imagery Using Spectral and Morphological Information[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2015, 101:145-162 doi: 10.1016/j.isprsjprs.2014.11.009
    [11]
    Benediktsson J A, Palmason J A, Sveinsson J R. Classification of Hyperspectral Data from Urban Areas Based on Extended Morphological Profiles[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(3):480-491 doi: 10.1109/TGRS.2004.842478
    [12]
    崔卫红. 基于图论的面向对象的高分辨率影像分割方法研究[D]. 武汉: 武汉大学, 2010

    Cui Weihong. Research on Graph Theory Based Object Oriented High Resolution Image Segmentation[D]. Wuhan: Wuhan University, 2010
    [13]
    Li P, Xiao X. Multispectral Image Segmentation by a Multichannel Watershed-Based Approach[J]. International Journal of Remote Sensing, 2007, 28(19):4429-4452 doi: 10.1080/01431160601034910
    [14]
    Carleer A P, Debeir O, Wolff E. Assessment of Very High Spatial Resolution Satellite Image Segmentations[J]. Photogramm Eng Remote Sens, 2005, 71(11):1285-1294 doi: 10.14358/PERS.71.11.1285
    [15]
    Sim D G, Kwon O K, Park R H. Object Matching Algorithms Using Robust Hausdorff Distance Measures[J]. IEEE Trans Image Process, 1999, 8(3):425-429 doi: 10.1109/83.748897
    [16]
    Felzenszwalb P F, Huttenloeher D P. Efficient Graph-Based Image Segmentation[J]. International Journal of Computer Vision. 2004, 59(2):167-181 doi: 10.1023/B:VISI.0000022288.19776.77
    [17]
    Baatz M, Schäpe A. Multiresolution Segmentation: an Optimization Approach for High Quality Multi-scale Image Segmentation[C]. Angewandte Geographische Informations-Verarbeitung XⅡ, Karlsruhe, Germany, 2000
    [18]
    Fan J, Zeng G, Body, M, et al. Seeded Region Growing:An Extensive and Comparative Study[J]. Pattern Recogn Lett, 2005, 26:1139-1156 doi: 10.1016/j.patrec.2004.10.010
    [19]
    Comaniciu D, Meer P. Mean shift:A Robust Approach Toward Feature Space Analysis[J]. Pattern Analysis and Machine Intelligence, 2002, 24(5):603-619 doi: 10.1109/34.1000236
  • Related Articles

    [1]HUANG Motao, OUYANG Yongzhong, BIAN Shaofeng, LI Shanshan, LI Mingsan, LU Xiuping, WANG Weiping, DONG Chao, TANG Minqiang, HONG Lidan, HOU Guangchao. Analysis and Reflections on the Development of Underwater Gravity-Aided Inertial Navigation Technology in the United States and Russia[J]. Geomatics and Information Science of Wuhan University, 2024, 49(11): 1977-1991. DOI: 10.13203/j.whugis20240228
    [2]LI Qingquan, CHEN Ruizhe, TU Wei, CHEN Zhipeng, ZHANG Bochen, YAN Aiguo, YIN Pengcheng. Real-Time Vision-Based Deformation Measurement of Long-Span Bridge with Inertial Sensors[J]. Geomatics and Information Science of Wuhan University, 2023, 48(11): 1834-1843. DOI: 10.13203/j.whugis20230006
    [3]WU Yanxiong, TENG Yuntian, WU Qiong, XU Xing, ZHANG Bing. Error Correction Model and Uncertainty Analysis of the Shipborne Absolute Gravity Measurement System[J]. Geomatics and Information Science of Wuhan University, 2022, 47(4): 492-500. DOI: 10.13203/j.whugis20190412
    [4]ZHA Feng, HE Hongyang, LI Zhiwei, LI Jingshu. A SINS Initial Alignment Method Using Improved Parameter Identification[J]. Geomatics and Information Science of Wuhan University, 2020, 45(7): 974-979. DOI: 10.13203/j.whugis20180312
    [5]GUAN Bin, SUN Zhongmiao, WU Fumei, LIU Xiaogang. Influence of Horizontal Disturbing Gravity on Position Error in Inertial Navigation Systems[J]. Geomatics and Information Science of Wuhan University, 2017, 42(10): 1474-1481. DOI: 10.13203/j.whugis20160006
    [6]QIN Fangjun, LI An, XU Jiangning. Analysis of Errors of Rotating Modulation INS Effected by Angular Motion of Vehicle[J]. Geomatics and Information Science of Wuhan University, 2012, 37(7): 831-833.
    [7]QIN Fangjun, XU Jiangning, LI An. A New Calculative Method for Gyro-Free Inertial Navigation System Using 9Accelerometers[J]. Geomatics and Information Science of Wuhan University, 2012, 37(3): 278-281.
    [8]OUYANG Yongzhong, LU Xiuping, HUANG Motao, ZHAI Guojun. An Integrated Method for Compensating the Systematic Errors of Marine and Airborne Measurements from L&R Gravimeter[J]. Geomatics and Information Science of Wuhan University, 2011, 36(5): 625-629.
    [9]JIN Jihang, BIAN Shaofeng. Analysis of Inertial Navigation System Positioning Error Caused by Gravity Disturbance[J]. Geomatics and Information Science of Wuhan University, 2010, 35(1): 30-32.
    [10]YANG Tao, WANG Wei, ZHU Zhiqin. Analysis and Verification of Time Synchronization Error in GPS/SINS Integrated System[J]. Geomatics and Information Science of Wuhan University, 2009, 34(10): 1181-1184.

Catalog

    Article views (1139) PDF downloads (289) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return