ZHANG Yonggang, WANG Zhengtao. Research on the Dynamic Evolution on a Small-Scale Topography of the Core-Mantle Boundary Based on Cellular Automata[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20240044
Citation: ZHANG Yonggang, WANG Zhengtao. Research on the Dynamic Evolution on a Small-Scale Topography of the Core-Mantle Boundary Based on Cellular Automata[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20240044

Research on the Dynamic Evolution on a Small-Scale Topography of the Core-Mantle Boundary Based on Cellular Automata

More Information
  • Received Date: November 04, 2024
  • Objectives: This article uses a cellular automaton model to simulate the thickness of the saturated fluid layer and the roughness of the core mantle boundary, aiming to provide small-scale information for studying the undulations of the core mantle boundary. Methods: The dynamic process of model evolution is abstracted as a set of stationary stochastic processes without memory based on the physical properties of the core mantle boundary. In the two-dimensional grid of the model, the cell size is consistent with the mantle particles and is in one of three states: mantle solid, saturated core fluid with light elements, and unsaturated core fluid with light elements. The transition of different cellular states is controlled by rate parameters that characterize the physical processes of dissolution, crystallization, and diffusion at the nuclear mantle boundary. Results: After the model evolved to a steady state, small-scale topographic changes occurred at the size of the cell units at the core mantle boundary, with a saturated fluid layer several tens of centimeters thick appearing at the boundary between the core and mantle boundaries. Conclusions: Research has shown that as the difference between the mass fraction of saturated light elements in the liquid outer core and the actual mass fraction of light elements increases, the dynamic processes of dissolution and crystallization become faster, and the thickness of the saturated fluid boundary layer gradually increases, with more pronounced oscillations over time; The roughness of the upper and lower boundaries also has similar characteristics. As the difference between the mass fraction of saturated light elements in the liquid outer core and the actual mass fraction of light elements increases, the roughness of the upper and lower boundaries increases and oscillates more significantly over time. Conversely, when the two are closer, the roughness of the upper and lower boundaries has a smaller and more stable value. The experimental results are consistent with the simulation calculation results of relevant scholars, which provide new experimental ideas for studying small-scale information of the core-mantle boundary and simulating its dynamic evolution process.
  • Related Articles

    [1]YANG Wan-ling, GAO Wu-tong, LIU Lu, WANG Bo, YAN Jian-guo. Orbit determination and accuracy analysis for comet 311P based on space-based and ground-based optical data[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20220710
    [2]LI Duoduo, ZHOU Xuhua, LI Kai, XU Kexin, TAO Enzhe. Precise Orbit Determination for HY2B Using On-Board GPS Data[J]. Geomatics and Information Science of Wuhan University, 2023, 48(12): 2060-2068. DOI: 10.13203/j.whugis20210303
    [3]WANG Bo, LIU Lu, YAN Jianguo, GAO Wutong. Development of Asteroid Optical Determination Software and Data Processing Analysis[J]. Geomatics and Information Science of Wuhan University, 2023, 48(2): 277-284. DOI: 10.13203/j.whugis20200195
    [4]ZHOU Xuhua, WANG Xiaohui, ZHAO Gang, PENG Hailong, WU Bin. The Precise Orbit Determination for HY2A Satellite Using GPS,DORIS and SLR Data[J]. Geomatics and Information Science of Wuhan University, 2015, 40(8): 1000-1005. DOI: 10.13203/j.whugis20130730
    [5]LI Wenwen, LI Min, SHI Chuang, ZHAO Qile. Jason-2 Precise Orbit Determination Using DORIS RINEX Phase Data[J]. Geomatics and Information Science of Wuhan University, 2013, 38(10): 1207-1211.
    [6]ZHANG Xiaohong, LI Pan, ZUO Xiang. Kinematic Precise Orbit Determination Based on Ambiguity-Fixed PPP[J]. Geomatics and Information Science of Wuhan University, 2013, 38(9): 1009-1013.
    [7]LI Min, ZHAO Qile, GE Maorong. Simulation Research on Precise Orbit Determination for GIOVE-A[J]. Geomatics and Information Science of Wuhan University, 2008, 33(8): 818-820.
    [8]ZHAO Qile, SHI Chuang, LIU Xianglin, GE Maorong. Determination of Precise Orbit Using Onboard GPS Data for Gravity Modeling Oriented Satellites[J]. Geomatics and Information Science of Wuhan University, 2008, 33(8): 810-814.
    [9]ZHAO Qile, LIU Jingnan, GE Maorong, SHI Chuang. Precision Orbit Determination of CHAMP Satellite with cm-level Accuracy[J]. Geomatics and Information Science of Wuhan University, 2006, 31(10): 879-882.
    [10]GUO Jinlai, ZHAO Qile, GUO Daoyu. Reducing the Influence of Gravity Model Error on Precise Orbit Determination of Low Earth Orbit Satellites[J]. Geomatics and Information Science of Wuhan University, 2006, 31(4): 293-296.

Catalog

    Article views (88) PDF downloads (18) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return