WANG Kai, LI Zhenhong, ZHANG Juqing. A Novel Regional Weighted Mean Temperature Model Through Multi-Source Data Fusion with Voronoi Diagrams: A Case Study in Northwest China[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20240009
Citation: WANG Kai, LI Zhenhong, ZHANG Juqing. A Novel Regional Weighted Mean Temperature Model Through Multi-Source Data Fusion with Voronoi Diagrams: A Case Study in Northwest China[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20240009

A Novel Regional Weighted Mean Temperature Model Through Multi-Source Data Fusion with Voronoi Diagrams: A Case Study in Northwest China

More Information
  • Accepted Date: April 14, 2024
  • Available Online: April 14, 2024
  • Objectives: The weighted mean temperature (Tm) is a key parameter for estimating precipitable water vapor (PWV) from Global Navigation Satellite System (GNSS) observations. The environment in northwest China is complicated, so it is necessary to establish a suitable atmospheric weighted mean temperature model. Methods: A novel Voronoi region regression model is presented by incorporating the Voronoi diagram concept into the traditional Tm regression model and a Voronoi region regression model is built using data from 24 radiosonde stations within the study region from 2017 to 2021. European Centre for Medium-Range Weather Forecasts reanalysis data and Global Geodetic Observing System Atmosphere Tm grid data are then integrated to generate a suitable for the Northwest regional Tm Augmentation Model (TAM). During the integration process, considering the fact that Tm decreases with elevation in the near-surface environment, a cubic polynomial model is proposed to correct the Tm values in the vertical direction. Results: The model is validated using data from radiosonde stations and GGOS Tm grid within the study region in 2022, suggesting that TAM model exhibits high accuracy and applicability in the Northwest region, with accuracy improvements of 19.7% and 50.7% compared to the Bevis model, 44.4% and 18.4% compared to GPT3-1 model, 53.8% and 41% compared to GPT3-5 respectively. Conclusions: The spatial distribution of Tm estimated by the TAM model exhibits optimal performance, especially in the Qinghai-Tibet Plateau and other high-altitude areas. It is believed that the TAM model holds great potential for high-precision water vapor monitoring with GNSS in mountainous areas.
  • [1]
    Li Zhenhong, Zhu Wu, Yu Chen, et al. Development Status and Trends of Imaging Geodesy[J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(11):1805-1834.(李振洪,朱武,余琛,等.影像大地测量学发展现状与趋势[J].测绘学报, 2023, 52(11):1805-1834.)
    [2]
    Yao Yibin, Zhang Shun, Kong Jian. Research Progress and Prospect of GNSS Space Environment Science[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10):1408-1420.(姚宜斌,张顺,孔建. GNSS空间环境学研究进展和展望[J].测绘学报, 2017, 46(10):1408-1420.)
    [3]
    King M D, Kaufman Y J, Menzel W P, et al. Remote Sensing of Cloud, Aerosol, and Water Vapor Properties from the Moderate Resolution Imaging Spectrometer (MODIS)[J]. IEEE Transactions on Geoscience and Remote Sensing, 1992, 30(1):2-27.
    [4]
    Rocken C, Van Hove T, Ware R. Near Real-time GPS Sensing of Atmospheric Water Vapor[J]. Geophysical Research Letters, 1997, 24(24):3221-3224.
    [5]
    Bevis M, Businger S, Herring T A, et al. GPS Meteorology:Remote Sensing of Atmospheric Water Vapor Using the Global Positioning System[J]. Journal of Geophysical Research:Atmospheres, 1992, 97(D14):15787-15801.
    [6]
    Li Z H, Muller J P, Cross P. Comparison of Precipitable Water Vapor Derived from Radiosonde, GPS, and Moderate-resolution Imaging Spectroradiometer Measurements[J]. Journal of Geophysical Research:Atmospheres, 2003, 108(D20):4651.
    [7]
    Bevis M, Businger S, Chiswell S, et al. GPS Meteorology:Mapping Zenith Wet Delays Onto Precipitable Water[J]. Journal of Applied Meteorology, 1994, 33(3):379-386.
    [8]
    Li Z, Muller J P, Cross P, et al. Validation of MERIS Near IR Water Vapour Retrievals Using MWR and GPS Measurements[C]. MERIS User Workshop, 2004, 549(3).
    [9]
    Wang X M, Zhang K F, Wu S Q, et al. Water Vapor-weighted Mean Temperature and Its Impact on the Determination of Precipitable Water Vapor and Its Linear Trend[J]. Journal of Geophysical Research:Atmospheres, 2016, 121(2):833-852.
    [10]
    Wang Xiaoying, Dai Ziqiang, Cao Yunchang, et al. Weighted Mean Temperature Tm Statistical Analysis in Ground-based GPS in China[J]. Geomatics and Information Science of Wuhan University, 2011, 36(4):412-416.(王晓英,戴仔强,曹云昌,等.中国地区地基GPS加权平均温度Tm统计分析[J].武汉大学学报(信息科学版), 2011, 36(4):412-416.)
    [11]
    Zhang Di, Yuan Linguo, Huang Liangke, et al. Atmospheric Weighted Mean Temperature Modeling for Australia[J]. Geomatics and Information Science of Wuhan University, 2022, 47(7):1146-1153.(张迪,袁林果,黄良珂,等.澳大利亚区域大气加权平均温度建模[J].武汉大学学报(信息科学版), 2022, 47(7):1146-1153.)
    [12]
    Yao Yibin, Liu Jinhong, Zhang Bao, et al. Nonlinear Relationships Between the Surface Temperature and the Weighted Mean Temperature[J]. Geomatics and Information Science of Wuhan University, 2015, 40(1):112-116.(姚宜斌,刘劲宏,张豹,等.地表温度与加权平均温度的非线性关系[J].武汉大学学报(信息科学版), 2015, 40(1):112-116.)
    [13]
    Yang F, Guo J M, Meng X L, et al. An Improved Weighted Mean Temperature (Tm) Model Based on GPT2w with Tm Lapse Rate[J]. GPS Solutions, 2020, 24(2):46.
    [14]
    Zhang S K, Gong L, Gao W L, et al. A Weighted Mean Temperature Model Using Principal Component Analysis for Greenland[J]. GPS Solutions, 2023, 27(1):57.
    [15]
    Yao Y B, Zhu S, Yue S Q. A Globally Applicable, Season-specific Model for Estimating the Weighted Mean Temperature of the Atmosphere[J]. Journal of Geodesy, 2012, 86(12):11251135.
    [16]
    Lagler K, Schindelegger M, Böhm J, et al. GPT2:Empirical Slant Delay Model for Radio Space Geodetic Techniques[J]. Geophysical Research Letters, 2013, 40(6):1069-1073.
    [17]
    Böhm J, Möller G, Schindelegger M, et al. Development of an Improved Empirical Model for Slant Delays in the Troposphere (GPT2w)[J]. GPS Solutions, 2015, 19(3):433-441.
    [18]
    Landskron D, Böhm J. VMF3/GPT3:Refined Discrete and Empirical Troposphere Mapping Functions[J]. Journal of Geodesy, 2018, 92(4):349-360.
    [19]
    Huang L K, Wang X, Xiong S, et al. High-precision GNSS PWV Retrieval Using Dense GNSS Sites and In-situ Meteorological Observations for the Evaluation of MERRA-2 and ERA5 Reanalysis Products over China[J]. Atmospheric Research, 2022, 276:106247.
    [20]
    Yao Yibin, Sun Zhangyu, Xu Chaoqian, et al. Global Weighted Mean Temperature Model Considering Nonlinear Vertical Reduction[J]. Geomatics and Information Science of Wuhan University, 2019, 44(1):106-111.(姚宜斌,孙章宇,许超钤,等.顾及非线性高程归算的全球加权平均温度模型[J].武汉大学学报(信息科学版), 2019, 44(1):106-111.)
    [21]
    Zhao Qingzhi, Du Zheng, Wu Manyi, et al. Establishment of PWV Fusion Model Using Multisource Data[J]. Geomatics and Information Science of Wuhan University, 2022, 47(11):18231831.(赵庆志,杜正,吴满意,等.利用多源数据构建PWV混合模型[J].武汉大学学报(信息科学版), 2022, 47(11):1823-1831.)
    [22]
    Davis J L, Herring T A, Shapiro I I, et al. Geodesy by Radio Interferometry:Effects of Atmospheric Modeling Errors on Estimates of Baseline Length[J]. Radio Science, 1985, 20(6):1593-1607.
    [23]
    Bolton D. The Computation of Equivalent Potential Temperature[J]. Monthly Weather Review, 1980, 108(7):1046-1053.
    [24]
    Xu Chaoqian, Yao Yibin, Zhang Bao, et al. Accuracy Analysis and Test on the Weighted Mean Temperature of the Atmosphere Grid Data Offered by GGOS Atmosphere[J]. Journal of Geomatics, 2014, 39(4):13-16.(许超钤,姚宜斌,张豹,等. GGOS Atmosphere大气加权平均温度数据的精度检验与分析[J].测绘地理信息, 2014, 39(4):13-16.)
    [25]
    Sun Y L, Yang F, Liu M J, et al. Evaluation of the Weighted Mean Temperature over China Using Multiple Reanalysis Data and Radiosonde[J]. Atmospheric Research, 2023, 285:106664.
    [26]
    Zhu Hai, Huang Guanwen, Zhang Juqing. A Regional Weighted Mean Temperature Model that Takes into Account Climate Differences:Taking Shaanxi, China as an Example[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(3):356-367.(朱海,黄观文,张菊清.顾及气候差异的区域加权平均温度模型:以中国陕西为例[J].测绘学报, 2021, 50(3):356-367.)
    [27]
    Huang L K, Jiang W P, Liu L L, et al. A New Global Grid Model for the Determination of Atmospheric Weighted Mean Temperature in GPS Precipitable Water Vapor[J]. Journal of Geodesy, 2019, 93(2):159-176.
  • Related Articles

    [1]HUANG Li, GONG Zhipeng, LIU Fanfan, CHENG Qimin. Bus Passenger Flow Detection Model Based on Image Cross-Scale Feature Fusion and Data Augmentation[J]. Geomatics and Information Science of Wuhan University, 2024, 49(5): 700-708. DOI: 10.13203/j.whugis20220690
    [2]HOU Zhaoyang, LÜ Kaiyun, GONG Xunqiang, ZHI Junhao, WANG Nan. Remote Sensing Image Fusion Based on Low-Level Visual Features and PAPCNN in NSST Domain[J]. Geomatics and Information Science of Wuhan University, 2023, 48(6): 960-969. DOI: 10.13203/j.whugis20220168
    [3]GUO Chunxi, GUO Xinwei, NIE Jianliang, WANG Bin, LIU Xiaoyun, WANG Haitao. Establishment of Vertical Movement Model of Chinese Mainland by Fusion Result of Leveling and GNSS[J]. Geomatics and Information Science of Wuhan University, 2023, 48(4): 579-586. DOI: 10.13203/j.whugis20200167
    [4]TU Chao-hu, YI Yao-hua, WANG Kai-li, PENG Ji-bing, YIN Ai-guo. Adaptive Multi-level Feature Fusion for Scene Ancient Chinese Text Recognition[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20230176
    [5]LIN Dong, QIN Zhiyuan, TONG Xiaochong, QIU Chunping, LI He. Objected-Based Structural Feature Extraction Method Using Spectral and Morphological Information[J]. Geomatics and Information Science of Wuhan University, 2018, 43(5): 704-710. DOI: 10.13203/j.whugis20150627
    [6]LIN Xueyuan. Two-Level Distributed Fusion Algorithm for Multisensor Integrated Navigation System[J]. Geomatics and Information Science of Wuhan University, 2012, 37(3): 274-277.
    [7]XU Kai, QIN Kun, DU Yi. Classification for Remote Sensing Data with Decision Level Fusion[J]. Geomatics and Information Science of Wuhan University, 2009, 34(7): 826-829.
    [8]ZHAO Yindi, ZHANG Liangpei, LI Pingxiang. A Texture Classification Algorithm Based on Feature Fusion[J]. Geomatics and Information Science of Wuhan University, 2006, 31(3): 278-281.
    [9]JIA Yonghong, LI Deren. An Approach of Classification Based on Pixel Level and Decision Level Fusion of Multi-source Images in Remote Sensing[J]. Geomatics and Information Science of Wuhan University, 2001, 26(5): 430-434.
    [10]Li Linhui, Wang Yu, Liu Yueyan, Li Lei, Huang Jincheng, Zhou Yi, Cao Songlin. A Fast Fusion Model for Multi-Source Heterogeneous Data Of Real Estate Based on Feature Similarity[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20220742

Catalog

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return