HUANG Guanwen, JING Ce, LI Dongxu, HUANG Xiaoyu, WANG Liyang, ZHANG Kai, YANG Huan, XIE Shichao, BAI Zhengwei, WANG Duo. Deformation Analysis of the Ms 6.2 Jishishan (Gansu,China) Earthquake on the Landslide Hazard Areas[J]. Geomatics and Information Science of Wuhan University, 2025, 50(2): 223-235. DOI: 10.13203/j.whugis20230490
Citation: HUANG Guanwen, JING Ce, LI Dongxu, HUANG Xiaoyu, WANG Liyang, ZHANG Kai, YANG Huan, XIE Shichao, BAI Zhengwei, WANG Duo. Deformation Analysis of the Ms 6.2 Jishishan (Gansu,China) Earthquake on the Landslide Hazard Areas[J]. Geomatics and Information Science of Wuhan University, 2025, 50(2): 223-235. DOI: 10.13203/j.whugis20230490

Deformation Analysis of the Ms 6.2 Jishishan (Gansu,China) Earthquake on the Landslide Hazard Areas

More Information
  • Received Date: December 21, 2023
  • Available Online: December 28, 2023
  • Objectives 

    Earthquake events can easily induce or accelerate the landslide failure. On 18th December 2023, an Ms 6.2 earthquake occurred in Jishishan County, Gansu province, with a focal depth of only 10 km. The surrounding landslide disaster-prone areas are faced with great hidden danger of sudden or advanced failure, and it is urgent to conduct rapid analysis and assessment of deformation in prone areas.

    Methods 

    In this paper, the global navigation satellite system(GNSS)and accelerometer real-time observation data of four landslide prone areas at different distances (64 km, 111 km, 140 km and 240 km) from the seismic center, and the damage effects of the main shock and aftershock on the landslide were comprehensively analyzed with precise point positioning, real-time kinematic, GNSS & accelerometer adaptive coupled technology and wavelet transform.

    Results 

    The results show that the elastic displacement of 1 cm and the permanent displacement of 0.5 cm aredetected in the Heifangtai landslide, 64 km away from the seismic center, while the obvious impact responses are detected in the Zhouqu landslide, 240 km away from the seismic center. The vibration frequency was between 0‐10 Hz, and the peak acceleration reached 0.035 m/s², which increased the risk of landslide failure.

    Conclusions 

    The displacement and vibration effects of the earthquake on the landslide are mainly concentrated in the horizontal direction, and the vertical direction is not significant. It is suggested the landslide disaster-prone areas within 64 km of Jishishan County should be investigated and evaluated as soon as possible to prevent secondary disaster damage.

  • [1]
    FENG G C, LI Z W, SHAN X J, et al. Geodetic Model of the 2015 April 25 Mw 7.8 Gorkha Nepal Earthquake and Mw 7.3 Aftershock Estimated from InSAR and GPS Data[J]. Geophysical Journal International, 2015, 203(2): 896-900.
    [2]
    张晓超, 裴向军, 张茂省, 等. 强震触发黄土滑坡流滑机理的试验研究: 以宁夏党家岔滑坡为例[J]. 工程地质学报, 2018, 26(5): 1219-1226.

    ZHANG Xiaochao, PEI Xiangjun, ZHANG Mao-sheng, et al. Experimental Study on Mechanism of Flow Slide of Loess Landslides Triggered by Strong Earthquake—A Case Study in Dangjiacha, Ningxia Province[J]. Journal of Engineering Geology, 2018, 26(5): 1219-1226.
    [3]
    王家鼎, 张倬元. 地震诱发高速黄土滑坡的机理研究[J]. 岩土工程学报, 1999, 21(6): 670-674.

    WANG Jiading, ZHANG Zhuoyuan. A Study on the Mechanism of High Speed Loess Landslide Induced by Earthquake[J]. Chinese Journal of Geotechnical Engineering, 1999, 21(6): 670-674.
    [4]
    ZHUANG W Q, CUI D X, HAO M, et al. Geodetic Constraints on Contemporary Three-Dimensional Crustal Deformation in the Laji Shan–Jishi Shan Tectonic Belt[J]. Geodesy and Geodynamics, 2023, 14(6): 589-596.
    [5]
    李智敏, 李延京, 田勤俭, 等. 拉脊山断裂古地震与喇家遗址灾变事件关系研究[J]. 地震研究, 2014, 37(S1): 109-115.

    LI Zhimin, LI Yanjing, TIAN Qinjian, et al. Study on the Relationship Between Paleoseismic on Laji Mountain Fault and Catastrophic Event on Lajiashan Site[J]. Journal of Seismological Research, 2014, 37(S1): 109-115.
    [6]
    中国科学院青藏高原研究所. 甘肃临夏M 6.2级地震震源破裂过程反演初步结果[EB/OL]. (2023-12-19). https://mp.weixin.qq.com/s/SuKbTgq8-0EV2Fb NcdlYqQ.

    Institute of Tibetan Plateau Research, Chinese Aca-demy of Sciences. Preliminary Results of the Inversion of the Rupture Process of the Seismic Source of the Gansu Linxia M 6.2 Magnitude Earthquake[EB/OL]. (2023-12-19). https://mp.weixin.qq.com/s/SuKbTgq8-0EV2FbNcdlYqQ.
    [7]
    复合链生自然灾害. 同震滑坡发生概率!2023年12月18日甘肃临夏积石山县Ms 6.2地震[EB/OL]. (2023-12-20). https://mp.weixin.qq.com/s/D4nDhPw_MAoNN54YBGsQ4g.

    National Institute of Natural Hazards. Probability of Coseismic Landslides! December18, 2023 Ms 6.2 Earthquake in Jishishan County, Gansu, China[EB/OL]. (2023-12-20). https://mp.weixin.qq.com/s/D4nDhPw_MAoNN54YBGsQ4g.
    [8]
    清华大学陆新征课题组. RED-ACT |12月18日夜甘肃6.2级地震破坏力分析[EB/OL]. (2023-12-19). https://mp.weixin.qq.com/s/oZJDAaFtOPm33mF38fRIKA.

    Lu Xinzheng Research Group, Tsinghua University. RED-ACT |Analysis of the Destructive Power of the6.2-Magnitude Earthquake in Gansu on the Night of December 18th [EB/OL]. (2023-12-19). https://mp.weixin.qq.com/s/oZJDAaFtOPm33mF38fRIKA.
    [9]
    地质灾害防治与地质环境保护国家重点实验室. 甘肃积石山6.2级地震诱发地质灾害空间概率预测[EB/OL]. (2023-12-19). https://www.sklgp.cdut.edu.cn/info/1025/6599.htm.

    State Key Laboratory of Geohazard Prevention and Geoenvironment Protection. Spatial Probability Prediction of Geologic Hazards Induced by the 6.2 Magnitude Earthquake in Jishishan, Gansu Province [EB/OL]. (2023-12-19). https://www.sklgp.cdut.edu.cn/info/1025/6599.htm.
    [10]
    湖北地震局. 2023年12月18日甘肃临夏M 6.2地震GNSS快速响应[EB/OL]. (2023-12-20). https://mp.weixin.qq.com/s/xvZUVy4rHqeAql EzeulY6A.

    Hubei Earthquake Agency. GNSS Rapid Response to the December18, 2023 Gansu Linxia M 6.2 Earthquake [EB/OL]. (2023-12-20). https://mp.weixin.qq.com/s/xvZUVy4rHqeAqlEzeulY6A.
    [11]
    FAN X M, SCARINGI G, KORUP O, et al. Earthquake-Induced Chains of Geologic Hazards: Patterns, Mechanisms, and Impacts[J]. Reviews of Geophysics, 2019, 57(2): 421-503.
    [12]
    WU Z L, MA T F, JIANG H, et al. Multi-scale Seismic Hazard and Risk in the China Mainland with Implication for the Preparedness, Mitigation, and Management of Earthquake Disasters: An Overview[J]. International Journal of Disaster Risk Reduction, 2013, 4: 21-33.
    [13]
    张勤, 白正伟, 黄观文, 等. GNSS滑坡监测预警技术进展[J]. 测绘学报, 2022, 51(10): 1985-2000.

    ZHANG Qin, BAI Zhengwei, HUANG Guanwen, et al. Review of GNSS Landslide Monitoring and Early Warning[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(10): 1985-2000.
    [14]
    HUANG G W, DU S, WANG D. GNSS Techniques for Real-Time Monitoring of Landslides: A Review[J]. Satellite Navigation, 2023, 4(1): 5.
    [15]
    LIU X H, DU Y, HUANG G W, et al. Mitigating GNSS Multipath in Landslide Areas: A Novel Approach Considering Mutation Points at Different Stages[J]. Landslides, 2023, 20(11): 2497-2510.
    [16]
    白正伟, 张勤, 黄观文, 等. “轻终端+行业云” 的实时北斗滑坡监测技术[J]. 测绘学报, 2019, 48(11): 1424-1429.

    BAI Zhengwei, ZHANG Qin, HUANG Guanwen, et al. Real-Time BeiDou Landslide Monitoring Technology of “Light Terminal Plus Industry Cloud”[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(11): 1424-1429.
    [17]
    杜源, 王纯, 张勤, 等. 顾及黄土滑坡灾害状态特征的实时GNSS滤波算法[J]. 武汉大学学报(信息科学版), 2023, 48(7): 1216-1222.

    DU Yuan, WANG Chun, ZHANG Qin, et al. Real-Time GNSS Filtering Algorithm Considering State Characteristics of Loess Landslide Hazards[J]. Geomatics and Information Science of Wuhan University, 2023, 48(7): 1216-1222.
    [18]
    魏正发, 张俊才, 曹小岩, 等. 青海西宁南北山滑坡、崩塌成因及影响分析[J]. 中国地质灾害与防治学报, 2021, 32(4): 47-55.

    WEI Zhengfa, ZHANG Juncai, CAO Xiaoyan, et al. Causes and Influential Factor Analysis of Landslides and Rockfalls in North & South Mountain Areas of Xining City, Qinghai Province[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(4): 47-55.
    [19]
    代聪, 李为乐, 陆会燕, 等. 甘肃省舟曲县城周边活动滑坡InSAR探测[J]. 武汉大学学报(信息科学版), 2021, 46(7): 994-1002.

    DAI Cong, LI Weile, LU Huiyan, et al. Active Landslides Detection in Zhouqu County, Gansu Province Using InSAR Technology[J]. Geomatics and Information Science of Wuhan University, 2021, 46(7): 994-1002.
    [20]
    DU Y, HUANG G W, ZHANG Q, et al. A New Asynchronous RTK Method to Mitigate Base Station Observation Outages[J]. Sensors, 2019, 19(15): 3376.
    [21]
    王铎, 黄观文, 杜源, 等. 顾及运动状态改正的GNSS滑坡监测基准站切换方法[J]. 测绘学报, 2022, 51(10): 2117-2124.

    WANG Duo, HUANG Guanwen, DU Yuan, et al. Switching Method of GNSS Landslide Monitoring Reference Station Considering the Correction of Motion State[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(10): 2117-2124.
    [22]
    WANG D, HUANG G W, DU Y, et al. Stability Analysis of Reference Station and Compensation for Monitoring Stations in GNSS Landslide Monitoring[J]. Satellite Navigation, 2023, 4(1): 29.
    [23]
    BOCK Y, MELGAR D, CROWELL B W. Real-Time Strong-Motion Broadband Displacements from Collocated GPS and Accelerometers[J]. The Bulletin of the Seismological Society of America, 2011, 101(6): 2904-2925.
    [24]
    GENG J H, BOCK Y, MELGAR D, et al. A New Seismogeodetic Approach Applied to GPS and Accelerometer Observations of the 2012 Brawley Seismic Swarm: Implications for Earthquake Early Warning[J]. Geochemistry, Geophysics, Geosystems, 2013, 14(7): 2124-2142.
    [25]
    景策, 黄观文, 张勤, 等. 方差膨胀模型用于GNSS/加速度计融合变形监测[J]. 大地测量与地球动力学, 2023, 43(5): 491-497.

    JING Ce, HUANG Guanwen, ZHANG Qin, et al. GNSS/Accelerometer Fusion Deformation Monito⁃ring Based on Variance Inflation Model[J]. Journal of Geodesy and Geodynamics, 2023, 43(5): 491-497.
    [26]
    JING C, HUANG G W, ZHANG Q, et al. GNSS/Accelerometer Adaptive Coupled Landslide Deformation Monitoring Technology[J]. Remote Sensing, 2022, 14(15): 3537.
    [27]
    JING C, HUANG G W, LI X, et al. GNSS/Acce-lerometer Integrated Deformation Monitoring Algorithm Based on Sensors Adaptive Noise Modeling[J]. Measurement, 2023, 218: 113179.
    [28]
    匡翠林, 戴吾蛟. GPS监测高层建筑风致振动变形及小波应用[J]. 武汉大学学报(信息科学版), 2010, 35(9): 1024-1028.

    KUANG Cuilin, DAI Wujiao. Measurement of Wind-Induced Vibration of Tall Buildings Using GPS and Wavelet Application[J]. Geomatics and Information Science of Wuhan University, 2010, 35(9): 1024-1028.
    [29]
    KIJEWSKI T, KAREEM A. Wavelet Transforms for System Identification in Civil Engineering[J]. Computer⁃Aided Civil and Infrastructure Enginee⁃ring, 2003, 18(5): 339-355.
    [30]
    SHAO X Y, XU C. Earthquake-Induced Landslides Susceptibility Assessment: A Review of the State-of-the-Art[J]. Natural Hazards Research, 2022, 2(3): 172-182.
    [31]
    NOWICKI JESSEE M A, HAMBURGER M W, FERRARA M R, et al. A Global Dataset and Model of Earthquake-Induced Landslide Fatalities[J]. Landslides, 2020, 17(6): 1363-1376.
    [32]
    MEO M, ZUMPANO G, MENG X L, et al. Measurements of Dynamic Properties of a Medium Span Suspension Bridge by Using the Wavelet Transforms[J]. Mechanical Systems and Signal Processing, 2006, 20(5): 1112-1133.
  • Related Articles

    [1]CHEN Bo, SONG Chuang, CHEN Yi, LI Zhenhong, YU Chen, LIU Haihui, JIANG Hui, LIU Zhenjiang, CAI Xingmin, NAI Yihan, ZHU Shuang, DU Jiantao, LI Zufeng, ZHAO Zhixiang, LI Suju, ZHU Wu, PENG Jianbing. Emergency Identification and Influencing Factor Analysis of Coseismic Landslides and Building Damages Induced by the 2023 Ms 6.2 Jishishan (Gansu,China) Earthquake[J]. Geomatics and Information Science of Wuhan University, 2025, 50(2): 322-332. DOI: 10.13203/j.whugis20230497
    [2]CHEN Peng, QIU Liangcai, YAO Yibin, ZHU Chengchang, LU Jierui, GUAN Xingyao, HONG Yang, SUN Shizheng. Surface Deformation and Hazard Analysis After the 2023 Ms 6.2 Earthquake in Jishishan, Gansu Province Based on InSAR and Optical Imagery Interpretation[J]. Geomatics and Information Science of Wuhan University, 2025, 50(2): 257-270. DOI: 10.13203/j.whugis20240074
    [3]ZHAO Qingzhi, WANG Pengcheng, YAO Yibin, GAO Yuting, WU Kan, LI Zufeng, MIAO Zhixuan, LIU Chen, WANG Wei, SUN Tingting, CHANG Lulu, MA Zhi. Impact Analysis of the Ms 6.2 Earthquake on Landslide Deformation and Near-Earth Space Environment in Jishishan, Gansu Province[J]. Geomatics and Information Science of Wuhan University, 2025, 50(2): 247-256. DOI: 10.13203/j.whugis20240080
    [4]ZHAO Zhan'ao, WANG Jizhou, MAO Xi, MA Weijun, LU Wenjuan, HE Yi, GAO Xuanyu. A Multi-dimensional CNN Coupled Landslide Susceptibility Assessment Method[J]. Geomatics and Information Science of Wuhan University, 2024, 49(8): 1466-1481. DOI: 10.13203/j.whugis20220325
    [5]WANG Mengxuan, DU Yuan, HUANG Guanwen, LI Xin, XUE Jiaqi. GNSS Comprehensive Stochastic Model Based on Empirical Cumulative Distribution Normalization Optimization[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20240185
    [6]CHEN Bin, WANG Li, SHU Bao, LI Xinrui, QU Wei, WU Hanwen, QIAN Yu, WU Zhenyu. GNSS Landslide Monitoring Coordinate Time Series Noise Reduction Methods Based on Composite Divisional Indicator Index and CEEMD-WT[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20240123
    [7]DU Yuan, WANG Chun, ZHANG Qin, HUANG Guanwen, WANG Duo. Real-Time GNSS Filtering Algorithm Considering State Characteristics of Loess Landslide Hazards[J]. Geomatics and Information Science of Wuhan University, 2023, 48(7): 1216-1222. DOI: 10.13203/j.whugis20230137
    [8]WANG Chenhui, GUO Wei, MENG Qingjia, LIU Yanyan, BI Fengdong. Landslide Deformation Monitoring Method and Performance Analysis Based on GNSS Virtual Reference Station[J]. Geomatics and Information Science of Wuhan University, 2022, 47(6): 990-996. DOI: 10.13203/j.whugis20220102
    [9]WU Xueling, YANG Jingyu, NIU Ruiqing. A Landslide Susceptibility Assessment Method Using SMOTE and Convolutional Neural Network[J]. Geomatics and Information Science of Wuhan University, 2020, 45(8): 1223-1232. DOI: 10.13203/j.whugis20200127
    [10]LIU Yuanbo, NIU Ruiqing, YU Xianyu, ZHANG Kaixiang. Application of the Rotation Forest Model in Landslide Susceptibility Assessment[J]. Geomatics and Information Science of Wuhan University, 2018, 43(6): 959-964. DOI: 10.13203/j.whugis20160132

Catalog

    Article views (370) PDF downloads (195) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return