LIU Yuanbo, NIU Ruiqing, YU Xianyu, ZHANG Kaixiang. Application of the Rotation Forest Model in Landslide Susceptibility Assessment[J]. Geomatics and Information Science of Wuhan University, 2018, 43(6): 959-964. DOI: 10.13203/j.whugis20160132
Citation: LIU Yuanbo, NIU Ruiqing, YU Xianyu, ZHANG Kaixiang. Application of the Rotation Forest Model in Landslide Susceptibility Assessment[J]. Geomatics and Information Science of Wuhan University, 2018, 43(6): 959-964. DOI: 10.13203/j.whugis20160132

Application of the Rotation Forest Model in Landslide Susceptibility Assessment

Funds: 

The National 863 Plan Project of China 2012AA121303

More Information
  • Author Bio:

    LIU Yuanbo, postgraduate, specializes in 3S and landslide hazard prediction. E-mail: giserlyb@163.com

  • Corresponding author:

    NIU Ruiqing, PhD, professor. E-mail: rqniu@163.com

  • Received Date: November 06, 2016
  • Published Date: June 04, 2018
  • Focusing on Wanzhou region of the Three Gorges Reservoir, 29 hazard factors were extracted from the multi-source spatial data used in evaluation factors in landslide susceptibility analysis. The study area was partitioned into slope units from digital elevation model to resample the conditio-ning factors. A rotation forest model was trained and used to map landslide susceptibility with the best accuracy being 90.7%, according to the receiver operator characteristic (ROC) curve and area under the curve (AUC). The higher susceptibility zones were about 11.6% of the total area, and primarily distributed in the main Wanzhou city zone, and along both sides of the Yangtze River and its tributaries. The stability zones are accounted for about 45.6%, mainly distributed in the areas of low human engineering activities and high surface cover degree. The results show that application of rotation forest in the landslide susceptibility assessment exhibits both excellent prediction ability and high accuracy.
  • [1]
    黄润秋, 许强.中国典型灾难性滑坡[M].北京:科学出版社, 2008

    Huang Runqiu, Xu Qiang. China Typical Catastrophic Landslide[M]. Beijing:Science Press, 2008
    [2]
    殷坤龙, 张桂荣, 陈丽霞, 等.滑坡灾害风险分析[M].北京:科学出版社, 2010

    Yin Kunlong, Zhang Guirong, Chen Lixia, et al.Landslide Risk Assessment[M]. Beijing:Science Press, 2010
    [3]
    Dou J, Yamagishi H, Pourghasemi H, et al. An Integrated Artificial Neural Network Model for the Landslide Susceptibility Assessment of Osado Island, Japan[J]. Natural Hazards, 2015, 78(3):1749-1776 doi: 10.1007/s11069-015-1799-2
    [4]
    谭龙, 陈冠, 曾润强, 等.人工神经网络在滑坡敏感性评价中的应用[J].兰州大学学报(自然科学版), 2014, 50(1):15-20 http://www.cnki.com.cn/Article/CJFDTotal-LDZK201401003.htm

    Tan Long, Chen Guan, Zeng Runqiang, et al. Application of Artificial Neural Network in Landslide Susceptibility Assessment[J]. Journal of Lanzhou University(Natural Sciences), 2014, 50(1):15-20 http://www.cnki.com.cn/Article/CJFDTotal-LDZK201401003.htm
    [5]
    Tehrany M, Pradhan B, Mansor S, et al. Flood Susceptibility Assessment Using GIS-based Support Vector Machine Model with Different Kernel Types[J]. Catena, 2015, 125(125):91-101 http://cn.bing.com/academic/profile?id=ee5d70553f9049c5126267bfb7748bd3&encoded=0&v=paper_preview&mkt=zh-cn
    [6]
    牛瑞卿, 彭令, 叶润青, 等.基于粗糙集的支持向量机滑坡易发性评价[J].吉林大学学报(地球科学版), 2012, 42(2):430-439 http://www.cqvip.com/QK/91256B/201202/41619273.html

    Niu Ruiqing, Peng Ling, Ye Runqing, et al. Landslide Susceptibility Assessment Based on Rough Sets and Support Vector Machine[J]. Journal of Jilin University(Earth Science Edition), 2012, 42(2):430-439 http://www.cqvip.com/QK/91256B/201202/41619273.html
    [7]
    Tsangaratos P, Ilia I. Landslide Susceptibility Mapping Using a Modified Decision Tree Classifier in the Xanthi Perfection, Greece[J].Landslides, 2016, 13(2):305-320 doi: 10.1007/s10346-015-0565-6
    [8]
    Hong H, Pradhan B, Xu C, et al. Spatial Prediction of Landslide Hazard at the Yihuang Area (China) Using Two-class Kernel Logistic Regression, Alternating Decision Tree and Support Vector Machines[J]. Catena, 2015, 133(133):266-281 http://cn.bing.com/academic/profile?id=b0a62cb884893ccc07b635f44ed99380&encoded=0&v=paper_preview&mkt=zh-cn
    [9]
    李亭, 田原, 邬伦, 等.基于随机森林方法的滑坡灾害危险性区划[J].地理与地理信息科学, 2014, 30(6):25-30 http://d.wanfangdata.com.cn/Periodical_dlxygtyj201406006.aspx

    Li Ting, Tian Yuan, Wu Lun, et al. Landslide Susceptibility Mapping Using Random Forest[J]. Geo-graphy and Geo-Information Science, 2014, 30(6):25-30 http://d.wanfangdata.com.cn/Periodical_dlxygtyj201406006.aspx
    [10]
    刘贲. 集成方法研究及其在遥感分类中的应用[D]. 大连: 大连理工大学, 2014

    Liu Ben. The Research on Ensembles Method and Its Application on Remote Sensing Image Classification[D]. Dalian: Dalian University of Technology, 2014
    [11]
    Ozcift A, Gulten A. Classifier Ensemble Construction with Rotation Forest to Improve Medical Diagnosis Performance of Machine Learning Algorithms[J]. Computer Methods and Programs in Biomedicine, 2011, 104(3):443-451 doi: 10.1016/j.cmpb.2011.03.018
    [12]
    刘亚卿, 陆慧娟, 杜帮俊, 等.面向基因数据分类的旋转森林算法研究[J].中国计量学院学报, 2015, 26(2):227-231 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgjlxyxb201502019

    Liu Yaqing, Lu Huijuan, Du Bangjun, et al. Study on Classifier Algorithm of Genetic Data Based on Rotation Forest[J]. Journal of China University of Metrology, 2015, 26(2):227-231 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgjlxyxb201502019
    [13]
    敖培, 李贺, 赵四方, 等.基于集成改进ELM的模拟电路故障诊断[J].电子世界, 2014, 20(20):89-90 doi: 10.3969/j.issn.1003-0522.2014.20.087

    Ao Pei, Li He, Zhao Sifang, et al. Analog Circuit Fault Diagnosis Based on Improved Integrated ELM[J]. Electronics World, 2014, 20(20):89-90 doi: 10.3969/j.issn.1003-0522.2014.20.087
    [14]
    邵良杉, 马寒.基于旋转森林的分类器集成算法研究[J].计算机工程与应用, 2015, 51(23):149-154 doi: 10.3778/j.issn.1002-8331.1311-0252

    Shao Liangshan, Ma Han. Study on Classifier Ensemble Algorithm Based on Rotation Forest[J]. Computer Engineering and Applications, 2015, 51(23):149-154 doi: 10.3778/j.issn.1002-8331.1311-0252
    [15]
    Rodríguez J, Kuncheva L, Alonso C J. Rotation Forest:A New Classifier Ensemble Method[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2006, 28(10):1619-1630 http://cn.bing.com/academic/profile?id=f3ecc5ec7f6f27707e28e7cd91fa6221&encoded=0&v=paper_preview&mkt=zh-cn
    [16]
    胡秋芬, 王刚, 王世梅, 等.三峡库区万州滑坡地质灾害危险性评价与区划[J].三峡大学学报(自然科学版), 2016, 38(1):20-25 http://industry.wanfangdata.com.cn/yj/Detail/Periodical?id=Periodical_whsldldxxb-yc201601005

    Hu Qiufen, Wang Gang, Wang Shimei, et al. Eva-luation and Regionalization of Landslide Geological Disaster in Wanzhou City, Three Goreges Reservoir Area[J]. Journal of China Three Gorges Univ(Natural Sciences), 2006, 38(1):20-25 http://industry.wanfangdata.com.cn/yj/Detail/Periodical?id=Periodical_whsldldxxb-yc201601005
    [17]
    张俊, 殷坤龙, 王佳佳, 等.三峡库区万州区滑坡灾害易发性评价研究[J].岩石力学与工程学报, 2016, 35(2):284-296 http://www.cnki.com.cn/Article/CJFDTotal-YSLX201404018.htm

    Zhang Jun, Yin Kunlong, Wang Jiajia, et, al. Eva-luation of Landslide Susceptibility for Wanzhou District of Three Gorges Reservoir[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(2):284-296 http://www.cnki.com.cn/Article/CJFDTotal-YSLX201404018.htm
    [18]
    曾忠平, 付小林, 刘雪梅, 等. GIS支持下滑坡斜坡类型定量化及制图研究[J].地理与地理信息科学, 2006, 22(1):22-25 http://edu.wanfangdata.com.cn/Periodical/Detail/dlxygtyj200601005

    Zeng Zhongping, Fu Xiaolin, Liu Xuemei, et al. Mapping and Quantitative Analysis on the Correlation Between Landslide and Geometric Alignment of Strikes of Slope and Stratum Based on GIS[J].Geo-graphy and Geo-Information Science, 2006, 22(1):22-25 http://edu.wanfangdata.com.cn/Periodical/Detail/dlxygtyj200601005
    [19]
    黄登琪.基于GIS的FUZZY在区域滑坡稳定性评价中的应用[J].科技展望, 2016, 6(6):128-129 http://cdmd.cnki.com.cn/Article/CDMD-11415-2010086147.htm

    Huang Dengqi. Regional Landslide Stability Evaluation Based on FUZZY of GIS[J].Prospect of Science and Technology, 2016, 6(6):128-129 http://cdmd.cnki.com.cn/Article/CDMD-11415-2010086147.htm
    [20]
    武雪玲, 任福, 牛瑞卿, 等.斜坡单元支持下的滑坡易发性评价支持向量机模型[J].武汉大学学报·信息科学版, 2013, 38(12):1499-1503 http://ch.whu.edu.cn/CN/abstract/abstract2839.shtml

    Wu Xueling, Ren Fu, Niu Ruiqing, et al. Landslide Spatial Prediction Based on Slope Units and Support Vector Machines[J].Geomatics and Information Science of Wuhan University, 2013, 38(12):1499-1503 http://ch.whu.edu.cn/CN/abstract/abstract2839.shtml
    [21]
    Kuncheva L, Rodríguez J. An Experimental Study on Rotation Forest Ensembles[M]. Heidelberg, Berlin:Springer, 2007
    [22]
    Yu X, Wang Y, Niu R, et al. A Combination of Geographically Weighted Regression, Particle Swarm Optimization and Support Vector Machine for Landslide Susceptibility Mapping:A Case Study at Wanzhou in the Three Gorges Area, China[J].International Journal of Environmental Research and Public Health, 2016, 13(5):487-521 doi: 10.3390/ijerph13050487
    [23]
    Hanley J, Mcneil B. The Meaning and Use of the Area Under a Receiver Operating Characteristic (ROC) Curve[J]. Radiology, 1982, 143(1):29-36 doi: 10.1148/radiology.143.1.7063747
  • Related Articles

    [1]GUO Jiachun, LIU Yi, SHEN Wenbin, SHI Guigang. Concept Analysis of Map Projection and Its Applications Based on Manifold Mapping Principle[J]. Geomatics and Information Science of Wuhan University, 2024, 49(12): 2313-2322. DOI: 10.13203/j.whugis20230138
    [2]JIAO Chenchen, LI Songlin, LI Houpu, BIAN Shaofeng, ZHONG Yexun. Non‑iterative Algorithm for Calculating the Reference Latitude of Conformal Conic Projection[J]. Geomatics and Information Science of Wuhan University, 2023, 48(2): 301-307. DOI: 10.13203/j.whugis20200301
    [3]ZENG Xiaoniu, LI Xihai, LIU Jihao, NIU Chao, HOU Weijun. Simultaneous Interpolation and Denoising Method for Airborne Gravity Data Based on Improved Projection onto Convex Sets Theory[J]. Geomatics and Information Science of Wuhan University, 2020, 45(10): 1555-1562. DOI: 10.13203/j.whugis20180470
    [4]LIU Wenchao, WEN Chaojiang, BIAN Hongwei, ZHENG Xiaobing. An Improved Method of Polar Ellipsoid Transverse Mercator Projection Based on Double Projection[J]. Geomatics and Information Science of Wuhan University, 2019, 44(8): 1138-1143. DOI: 10.13203/j.whugis20180028
    [5]SUN Weiwei, JIANG Man, LI Weiyue. Band Selection Using Sparse Self-representation for Hyperspectral Imagery[J]. Geomatics and Information Science of Wuhan University, 2017, 42(4): 441-448. DOI: 10.13203/j.whugis20150052
    [6]LIAO Li, ZHOU Xueqin, LI Qingqing, CHEN Lu, ZHOU Jianzhong. A Dual Iterative Clustering Based Fuzzy Projection Pursuit Clustering Algorithm[J]. Geomatics and Information Science of Wuhan University, 2016, 41(7): 932-938. DOI: 10.13203/j.whugis20140152
    [7]ZHAO Hu, LI Lin, GONG Jianya. Universal Map Projection Selection[J]. Geomatics and Information Science of Wuhan University, 2010, 35(2): 244-247.
    [8]CHENMi, YIYaohua, LIDeren, QINQianqing. Application of Projection Pursuit Based on Dynamical Evolutionary Algorithm to Anomaly Target Detection in Hyperspectral Images[J]. Geomatics and Information Science of Wuhan University, 2006, 31(1): 55-58.
    [9]Chen Yongqi. Selection of Projection Technique and Reduction of Geodetic Observations for Huge Engineering Project SSC[J]. Geomatics and Information Science of Wuhan University, 1993, 18(2): 10-14.
    [10]Hu Yuju. The Possibility of Making Further Additions to the Map Projection Classifications——On the Poly-eylindrical Projection[J]. Geomatics and Information Science of Wuhan University, 1986, 11(3): 55-61.
  • Cited by

    Periodical cited type(5)

    1. 李殷娜,李正强,郑杨,侯伟真,徐文斌,马??,樊程,葛邦宇,姚前,史正. 基于非负矩阵分解的中红外地表特性光谱重建方法. 光谱学与光谱分析. 2024(02): 563-570 .
    2. 钟雷洋,周颖,高松,夏吉喆,李珍,李晓明,乐阳,李清泉. 突发公共卫生事件下的人口流动模式变化识别. 武汉大学学报(信息科学版). 2024(07): 1237-1249 .
    3. 李玉,甄畅,石雪,朱磊. 基于波段影像统计信息量加权K-means聚类的高光谱影像分类. 控制与决策. 2021(05): 1119-1126 .
    4. 赵玉英,任明武. 基于SNMF聚类与类间可分性因子的高光谱波段选择. 计算机与数字工程. 2021(09): 1884-1888 .
    5. 曾梦,宁彬,蔡之华,谷琼. 使用深度对抗子空间聚类实现高光谱波段选择. 计算机应用. 2020(02): 381-385 .

    Other cited types(2)

Catalog

    Article views (1845) PDF downloads (231) Cited by(7)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return