WEI Haohan, ZHANG Qiang, SHEN Fei. GNSS-IR Soil Moisture Estimation Based on Track Clustering and Multi Characteristic Parameter Fusion Using Entropy Method[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20230419
Citation: WEI Haohan, ZHANG Qiang, SHEN Fei. GNSS-IR Soil Moisture Estimation Based on Track Clustering and Multi Characteristic Parameter Fusion Using Entropy Method[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20230419

GNSS-IR Soil Moisture Estimation Based on Track Clustering and Multi Characteristic Parameter Fusion Using Entropy Method

More Information
  • Received Date: January 19, 2024
  • Available Online: February 29, 2024
  • Objectives: GNSS-IR technology, as an emerging tool for near-Earth remote sensing, has become a research hotspot in recent years in the area of soil moisture monitoring, with its low cost and high precision. Methods: In order to improve the accuracy of GNSS-IR technology in retrieving soil moisture, a self-built GNSS station located in Lishui District, Nanjing City was selected as the research data source, Firstly, feature parameters such as multipath coherent phase, amplitude, and frequency of Signal-to-Noise Ratio (SNR) observation data from GPS, BDS, GLONASS, Galileo, and other systems are extracted. Based on the analysis of the characteristics of GNSS observation SNR changes with soil moisture in different systems, different frequency bands and different orbits, a multi GNSS system feature data fusion inversion method considering satellite trajectory differences was proposed. For the observation data of multiple GNSS systems, trajectory clustering fusion is carried out according to different orbits and frequency bands. After confirming the weight using entropy method, soil moisture inversion is carried out. The results of multi-system trajectory fusion inversion are compared with traditional average weight fusion methods and multiple linear regression methods. Results: The combination of SNR's phase, amplitude, and frequency feature parameters for soil moisture fusion inversion is better than the inversion results of a single phase feature parameter and a combination of two feature parameters (phase, amplitude); Multi-system trajectory fusion generally improves the inversion performance compared to single system trajectory fusion, with an average correlation coefficient increasing by 4.0% and RMSE decreasing by 22.8% to 39.9%; The multi-system trajectory clustering fusion soil moisture inversion method based on entropy method reduces RMSE by 34.0%, 25.6% and 29.5% respectively compared to traditional average weight fusion method, multiple linear regression method and weighted fusion method. Conclusions: The proposed method can provide long-term and accurate soil moisture inversion results.
  • [1]
    Hirschi M, Seneviratne S I, Alexandrov V, et al. Observational evidence for soil-moisture impact on hot extremes in southeastern Europe[J]. Nature Geoscience, 2011, 4(1): 17-21.
    [2]
    Zeng J, Chen K-S, Bi H, et al. A preliminary evaluation of the SMAP radiometer soil moisture product over United States and Europe using ground-based measurements[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(8): 4929-4940.
    [3]
    Topp G, Davis J. Measurement of soil water content using time‐domain reflectrometry (TDR): A field evaluation[J]. Soil Science Society of America Journal, 1985, 49(1): 19-24.
    [4]
    Larson K M, Small E E, Gutmann E, et al. Using GPS multipath to measure soil moisture fluctuations: Initial results[J]. GPS solutions, 2008, 12: 173-177.
    [5]
    Larson K M, Small E E, Gutmann E D, et al. Use of GPS receivers as a soil moisture network for water cycle studies[J]. Geophysical Research Letters, 2008, 35(24).
    [6]
    Rodriguez-Alvarez N, Camps A, Vall-Llossera M, et al. Land geophysical parameters retrieval using the interference pattern GNSS-R technique[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 49(1): 71-84.
    [7]
    Chew C C, Small E E, Larson K M, et al. Effects of near-surface soil moisture on GPS SNR data: Development of a retrieval algorithm for soil moisture[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 52(1): 537-543.
    [8]
    Roussel N, Frappart F, Ramillien G, et al. Detection of soil moisture variations using GPS and GLONASS SNR data for elevation angles ranging from 2 to 70[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9(10): 4781-4794.
    [9]
    WU Jizhong, WANG Tian, WU Wei. Retrieval model for soil Moisture content using GPSinterferometric reflectometry[J]. Geomatics and Information Science of Wuhan University, 2018, 43(6): 887-892.(吴继忠, 王天, 吴玮. 利用GPS-IR监测土壤含水量的反演模型[J]. 武汉大学学报(信息科学版), 2018, 43(6): 887-892.)
    [10]
    SUN Bo, LIANG Yong, HAN Mutian, et al. A method for GNSS-IR soil moisture inversion based on GPS multi-satellite and triple-frequency data fusion[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(6): 1089-1096. (孙波, 梁勇, 汉牟田, 等. 基于GPS多星三频数据融合的GNSS-IR土壤湿度反演方法[J]. 北京航空航天大学学报, 2020, 46: 1089-1096.)
    [11]
    Chen K, Cao X, Shen F, et al. An Improved Method of Soil Moisture Retrieval Using MultiFrequency SNR Data[J]. Remote Sensing, 2021, 13(18): 3725.
    [12]
    Liang Y, Lai J, Ren C, et al. GNSS-IR multisatellite combination for soil moisture retrieval based on wavelet analysis considering detection and repair of abnormal phases[J]. Measurement, 2022, 203: 111881.
    [13]
    HE Jiaxing, ZHENG Nanshan, DING Rui, ZHANG Kefei, CHEN Tianyue. A GNSS-IR soil moisture inversion method based on the convolutional neural network optimized by particle swarm optimization[J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(8): 1286-1297. (何佳星, 郑南山, 丁锐, 等. 粒子群优化卷积神经网络GNSS-IR土壤湿度反演方法[J]. 测绘学报, 2023, 52: 1286-1297.)
    [14]
    Guo Fei, Chen Weijie, Zhu Yifan, et al. A GNSS-IR Soil Moisture Inversion Method Integrating Phase, Amplitude and Frequency[J]. Geomatics and Information Science of Wuhan University, 2022. (郭斐, 陈惟杰, 朱逸凡, 等. 一种融合相位、振幅与频率的GNSS-IR土壤湿度反演方法[J]. 武汉大学学报(信息科学版), 2022.)
    [15]
    JIN Shuanggen, ZHANG Qinyun, QIAN Xiaodong. New Progress and Application Prospects of Global Navigation Satellite System Reflectometry (GNSS+R). Acta Geodaetica et Cartographica Sinica, 2017, 46(10): 1389-1398. (金双根, 张勤耘, 钱晓东. (全球导航卫星系统反射测量(GNSS+R)最新进展与应用前景[J]. 测绘学报, 2017, 46(10): 1389-1398.)
    [16]
    Yang T, Wan W, Chen X, et al. Using BDS SNR observations to measure near-surface soil moisture fluctuations: Results from low vegetated surface[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(8): 1308-1312.
    [17]
    Shen F, Sui M, Zhu Y, et al. Using BDS MEO and IGSO Satellite SNR Observations to Measure Soil Moisture Fluctuations Based on the Satellite Repeat Period[J]. Remote Sensing, 2021, 13(19): 3967.
    [18]
    YANG Lei, WU Qiulan, ZHANG Bo, et al. SVRM-assisted soil moisture retrieval method using reflected signal from BeiDou GEO satellites[J]. Journal of Beijing University of Aeronautics and Astronsutics, 2016, 42(6): 1134-1141. (杨磊, 吴秋兰, 张波, 等. SVRM辅助的北斗GEO卫星反射信号土壤湿度反演方法[J]. 北京航空航天大学学报, 2016, 42: 1134-1141.)
    [19]
    HAN M T, XU Z C, CHANG Q, et al. Soil moisture retrieval using Beidou GEO satellite interference signal power[J]. Journal of Beijing University of Aeronautics and Astronautics, 2023, 49(7): 1661-1670. (汉牟田, 许志超, 常青, 等. 利用北斗GEO卫星干涉信号功率反演土壤湿度[J]. 北京航空航天大学学报, 2023, 49(7): 1661-1670.)
    [20]
    ZHANG Shuangcheng, WANG Tao, WANG Lixia, et al. Research on variation of soil moisture retrieval by BDS/GPS[J]. Science of Surveying and Mapping, 2021, 46(7): 7-14. (张双成, 王涛, 王丽霞, 等. BDS/GPS多卫星解译土壤湿度变化研究[J]. 测绘科学, 2021, 46(7): 7-14.)
    [21]
    ZHENG Nanshan,HE Jiaxing,DING Rui,et al.A GNSS-IR Multi-System Combination Soil Moisture Estimation Method Based on Track Clustering[J]. Geomatics and Information Science of Wuhan University, 2023. (郑南山, 何佳星, 丁锐, 等. 基于轨迹聚类的GNSS-IR多系统组合土壤湿度估计方法[J]. 武汉大学学报(信息科学版,2023.)
  • Related Articles

    [1]HUANG Li, GONG Zhipeng, LIU Fanfan, CHENG Qimin. Bus Passenger Flow Detection Model Based on Image Cross-Scale Feature Fusion and Data Augmentation[J]. Geomatics and Information Science of Wuhan University, 2024, 49(5): 700-708. DOI: 10.13203/j.whugis20220690
    [2]HOU Zhaoyang, LÜ Kaiyun, GONG Xunqiang, ZHI Junhao, WANG Nan. Remote Sensing Image Fusion Based on Low-Level Visual Features and PAPCNN in NSST Domain[J]. Geomatics and Information Science of Wuhan University, 2023, 48(6): 960-969. DOI: 10.13203/j.whugis20220168
    [3]GUO Chunxi, GUO Xinwei, NIE Jianliang, WANG Bin, LIU Xiaoyun, WANG Haitao. Establishment of Vertical Movement Model of Chinese Mainland by Fusion Result of Leveling and GNSS[J]. Geomatics and Information Science of Wuhan University, 2023, 48(4): 579-586. DOI: 10.13203/j.whugis20200167
    [4]TU Chao-hu, YI Yao-hua, WANG Kai-li, PENG Ji-bing, YIN Ai-guo. Adaptive Multi-level Feature Fusion for Scene Ancient Chinese Text Recognition[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20230176
    [5]LIN Dong, QIN Zhiyuan, TONG Xiaochong, QIU Chunping, LI He. Objected-Based Structural Feature Extraction Method Using Spectral and Morphological Information[J]. Geomatics and Information Science of Wuhan University, 2018, 43(5): 704-710. DOI: 10.13203/j.whugis20150627
    [6]LIN Xueyuan. Two-Level Distributed Fusion Algorithm for Multisensor Integrated Navigation System[J]. Geomatics and Information Science of Wuhan University, 2012, 37(3): 274-277.
    [7]XU Kai, QIN Kun, DU Yi. Classification for Remote Sensing Data with Decision Level Fusion[J]. Geomatics and Information Science of Wuhan University, 2009, 34(7): 826-829.
    [8]ZHAO Yindi, ZHANG Liangpei, LI Pingxiang. A Texture Classification Algorithm Based on Feature Fusion[J]. Geomatics and Information Science of Wuhan University, 2006, 31(3): 278-281.
    [9]JIA Yonghong, LI Deren. An Approach of Classification Based on Pixel Level and Decision Level Fusion of Multi-source Images in Remote Sensing[J]. Geomatics and Information Science of Wuhan University, 2001, 26(5): 430-434.
    [10]Li Linhui, Wang Yu, Liu Yueyan, Li Lei, Huang Jincheng, Zhou Yi, Cao Songlin. A Fast Fusion Model for Multi-Source Heterogeneous Data Of Real Estate Based on Feature Similarity[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20220742

Catalog

    Article views (109) PDF downloads (22) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return