Citation: | WEI Haohan, ZHANG Qiang, SHEN Fei. GNSS-IR Soil Moisture Estimation Based on Track Clustering and Multi Characteristic Parameter Fusion Using Entropy Method[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20230419 |
[1] |
Hirschi M, Seneviratne S I, Alexandrov V, et al. Observational evidence for soil-moisture impact on hot extremes in southeastern Europe[J]. Nature Geoscience, 2011, 4(1): 17-21.
|
[2] |
Zeng J, Chen K-S, Bi H, et al. A preliminary evaluation of the SMAP radiometer soil moisture product over United States and Europe using ground-based measurements[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(8): 4929-4940.
|
[3] |
Topp G, Davis J. Measurement of soil water content using time‐domain reflectrometry (TDR): A field evaluation[J]. Soil Science Society of America Journal, 1985, 49(1): 19-24.
|
[4] |
Larson K M, Small E E, Gutmann E, et al. Using GPS multipath to measure soil moisture fluctuations: Initial results[J]. GPS solutions, 2008, 12: 173-177.
|
[5] |
Larson K M, Small E E, Gutmann E D, et al. Use of GPS receivers as a soil moisture network for water cycle studies[J]. Geophysical Research Letters, 2008, 35(24).
|
[6] |
Rodriguez-Alvarez N, Camps A, Vall-Llossera M, et al. Land geophysical parameters retrieval using the interference pattern GNSS-R technique[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 49(1): 71-84.
|
[7] |
Chew C C, Small E E, Larson K M, et al. Effects of near-surface soil moisture on GPS SNR data: Development of a retrieval algorithm for soil moisture[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 52(1): 537-543.
|
[8] |
Roussel N, Frappart F, Ramillien G, et al. Detection of soil moisture variations using GPS and GLONASS SNR data for elevation angles ranging from 2 to 70[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9(10): 4781-4794.
|
[9] |
WU Jizhong, WANG Tian, WU Wei. Retrieval model for soil Moisture content using GPSinterferometric reflectometry[J]. Geomatics and Information Science of Wuhan University, 2018, 43(6): 887-892.(吴继忠, 王天, 吴玮. 利用GPS-IR监测土壤含水量的反演模型[J]. 武汉大学学报(信息科学版), 2018, 43(6): 887-892.)
|
[10] |
SUN Bo, LIANG Yong, HAN Mutian, et al. A method for GNSS-IR soil moisture inversion based on GPS multi-satellite and triple-frequency data fusion[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(6): 1089-1096. (孙波, 梁勇, 汉牟田, 等. 基于GPS多星三频数据融合的GNSS-IR土壤湿度反演方法[J]. 北京航空航天大学学报, 2020, 46: 1089-1096.)
|
[11] |
Chen K, Cao X, Shen F, et al. An Improved Method of Soil Moisture Retrieval Using MultiFrequency SNR Data[J]. Remote Sensing, 2021, 13(18): 3725.
|
[12] |
Liang Y, Lai J, Ren C, et al. GNSS-IR multisatellite combination for soil moisture retrieval based on wavelet analysis considering detection and repair of abnormal phases[J]. Measurement, 2022, 203: 111881.
|
[13] |
HE Jiaxing, ZHENG Nanshan, DING Rui, ZHANG Kefei, CHEN Tianyue. A GNSS-IR soil moisture inversion method based on the convolutional neural network optimized by particle swarm optimization[J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(8): 1286-1297. (何佳星, 郑南山, 丁锐, 等. 粒子群优化卷积神经网络GNSS-IR土壤湿度反演方法[J]. 测绘学报, 2023, 52: 1286-1297.)
|
[14] |
Guo Fei, Chen Weijie, Zhu Yifan, et al. A GNSS-IR Soil Moisture Inversion Method Integrating Phase, Amplitude and Frequency[J]. Geomatics and Information Science of Wuhan University, 2022. (郭斐, 陈惟杰, 朱逸凡, 等. 一种融合相位、振幅与频率的GNSS-IR土壤湿度反演方法[J]. 武汉大学学报(信息科学版), 2022.)
|
[15] |
JIN Shuanggen, ZHANG Qinyun, QIAN Xiaodong. New Progress and Application Prospects of Global Navigation Satellite System Reflectometry (GNSS+R). Acta Geodaetica et Cartographica Sinica, 2017, 46(10): 1389-1398. (金双根, 张勤耘, 钱晓东. (全球导航卫星系统反射测量(GNSS+R)最新进展与应用前景[J]. 测绘学报, 2017, 46(10): 1389-1398.)
|
[16] |
Yang T, Wan W, Chen X, et al. Using BDS SNR observations to measure near-surface soil moisture fluctuations: Results from low vegetated surface[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(8): 1308-1312.
|
[17] |
Shen F, Sui M, Zhu Y, et al. Using BDS MEO and IGSO Satellite SNR Observations to Measure Soil Moisture Fluctuations Based on the Satellite Repeat Period[J]. Remote Sensing, 2021, 13(19): 3967.
|
[18] |
YANG Lei, WU Qiulan, ZHANG Bo, et al. SVRM-assisted soil moisture retrieval method using reflected signal from BeiDou GEO satellites[J]. Journal of Beijing University of Aeronautics and Astronsutics, 2016, 42(6): 1134-1141. (杨磊, 吴秋兰, 张波, 等. SVRM辅助的北斗GEO卫星反射信号土壤湿度反演方法[J]. 北京航空航天大学学报, 2016, 42: 1134-1141.)
|
[19] |
HAN M T, XU Z C, CHANG Q, et al. Soil moisture retrieval using Beidou GEO satellite interference signal power[J]. Journal of Beijing University of Aeronautics and Astronautics, 2023, 49(7): 1661-1670. (汉牟田, 许志超, 常青, 等. 利用北斗GEO卫星干涉信号功率反演土壤湿度[J]. 北京航空航天大学学报, 2023, 49(7): 1661-1670.)
|
[20] |
ZHANG Shuangcheng, WANG Tao, WANG Lixia, et al. Research on variation of soil moisture retrieval by BDS/GPS[J]. Science of Surveying and Mapping, 2021, 46(7): 7-14. (张双成, 王涛, 王丽霞, 等. BDS/GPS多卫星解译土壤湿度变化研究[J]. 测绘科学, 2021, 46(7): 7-14.)
|
[21] |
ZHENG Nanshan,HE Jiaxing,DING Rui,et al.A GNSS-IR Multi-System Combination Soil Moisture Estimation Method Based on Track Clustering[J]. Geomatics and Information Science of Wuhan University, 2023. (郑南山, 何佳星, 丁锐, 等. 基于轨迹聚类的GNSS-IR多系统组合土壤湿度估计方法[J]. 武汉大学学报(信息科学版,2023.)
|
[1] | HUANG Li, GONG Zhipeng, LIU Fanfan, CHENG Qimin. Bus Passenger Flow Detection Model Based on Image Cross-Scale Feature Fusion and Data Augmentation[J]. Geomatics and Information Science of Wuhan University, 2024, 49(5): 700-708. DOI: 10.13203/j.whugis20220690 |
[2] | HOU Zhaoyang, LÜ Kaiyun, GONG Xunqiang, ZHI Junhao, WANG Nan. Remote Sensing Image Fusion Based on Low-Level Visual Features and PAPCNN in NSST Domain[J]. Geomatics and Information Science of Wuhan University, 2023, 48(6): 960-969. DOI: 10.13203/j.whugis20220168 |
[3] | GUO Chunxi, GUO Xinwei, NIE Jianliang, WANG Bin, LIU Xiaoyun, WANG Haitao. Establishment of Vertical Movement Model of Chinese Mainland by Fusion Result of Leveling and GNSS[J]. Geomatics and Information Science of Wuhan University, 2023, 48(4): 579-586. DOI: 10.13203/j.whugis20200167 |
[4] | TU Chao-hu, YI Yao-hua, WANG Kai-li, PENG Ji-bing, YIN Ai-guo. Adaptive Multi-level Feature Fusion for Scene Ancient Chinese Text Recognition[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20230176 |
[5] | LIN Dong, QIN Zhiyuan, TONG Xiaochong, QIU Chunping, LI He. Objected-Based Structural Feature Extraction Method Using Spectral and Morphological Information[J]. Geomatics and Information Science of Wuhan University, 2018, 43(5): 704-710. DOI: 10.13203/j.whugis20150627 |
[6] | LIN Xueyuan. Two-Level Distributed Fusion Algorithm for Multisensor Integrated Navigation System[J]. Geomatics and Information Science of Wuhan University, 2012, 37(3): 274-277. |
[7] | XU Kai, QIN Kun, DU Yi. Classification for Remote Sensing Data with Decision Level Fusion[J]. Geomatics and Information Science of Wuhan University, 2009, 34(7): 826-829. |
[8] | ZHAO Yindi, ZHANG Liangpei, LI Pingxiang. A Texture Classification Algorithm Based on Feature Fusion[J]. Geomatics and Information Science of Wuhan University, 2006, 31(3): 278-281. |
[9] | JIA Yonghong, LI Deren. An Approach of Classification Based on Pixel Level and Decision Level Fusion of Multi-source Images in Remote Sensing[J]. Geomatics and Information Science of Wuhan University, 2001, 26(5): 430-434. |
[10] | Li Linhui, Wang Yu, Liu Yueyan, Li Lei, Huang Jincheng, Zhou Yi, Cao Songlin. A Fast Fusion Model for Multi-Source Heterogeneous Data Of Real Estate Based on Feature Similarity[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20220742 |